Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Immunologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Immunology
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses

Authors: P. Sriramarao; Mark M. Fuster; Jeffrey D. Esko; Lianchun Wang;

Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses

Abstract

Here we have studied the involvement of endothelial heparan sulfate in inflammation by inactivating the enzyme N-acetyl glucosamine N-deacetylase-N-sulfotransferase-1 in endothelial cells and leukocytes, which is required for the addition of sulfate to the heparin sulfate chains. Mutant mice developed normally but showed impaired neutrophil infiltration in various inflammation models. These effects were due to changes in heparan sulfate specifically in endothelial cells. Decreased neutrophil infiltration was partially due to altered rolling velocity correlated with weaker binding of L-selectin to endothelial cells. Chemokine transcytosis across endothelial cells and presentation on the cell surface were also reduced, resulting in decreased neutrophil firm adhesion and migration. Thus, endothelial heparan sulfate has three functions in inflammation: by acting as a ligand for L-selectin during neutrophil rolling; in chemokine transcytosis; and by binding and presenting chemokines at the lumenal surface of the endothelium.

Keywords

Inflammation, Mice, Knockout, Neutrophils, Chemokine CXCL1, Chemokine CXCL2, Endothelial Cells, Amidohydrolases, Mice, Inbred C57BL, Mice, P-Selectin, Animals, Cytokines, Leukocyte Rolling, Heparitin Sulfate, Chemokines, L-Selectin, Sulfotransferases, Chemokines, CXC, Lung

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    431
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
431
Top 1%
Top 1%
Top 1%