An actin-dependent mechanism for long-range vesicle transport
An actin-dependent mechanism for long-range vesicle transport
Intracellular transport is vital for the function, survival and architecture of every eukaryotic cell. Long-range transport in animal cells is thought to depend exclusively on microtubule tracks. This study reveals an unexpected actin-dependent but microtubule-independent mechanism for long-range transport of vesicles. Vesicles organize their own actin tracks by recruiting the actin nucleation factors Spire1, Spire2 and Formin-2, which assemble an extensive actin network from the vesicles' surfaces. The network connects the vesicles with one another and with the plasma membrane. Vesicles move directionally along these connections in a myosin-Vb-dependent manner to converge and to reach the cell surface. The overall outward-directed movement of the vesicle-actin network is driven by recruitment of vesicles to the plasma membrane in the periphery of the oocyte. Being organized in a dynamic vesicle-actin network allows vesicles to move in a local random manner and a global directed manner at the same time: they can reach any position in the cytoplasm, but also move directionally to the cell surface as a collective. Thus, collective movement within a network is a powerful and flexible mode of vesicle transport.
- University of Göttingen Germany
- MRC Laboratory of Molecular Biology United Kingdom
- Medical Research Council United Kingdom
Actin Cytoskeleton, Mice, Cytoplasmic Vesicles, Microfilament Proteins, Oocytes, Animals, Biological Transport, Active, Formins, Nuclear Proteins, Female, Nerve Tissue Proteins, Actins, Mice, Mutant Strains
Actin Cytoskeleton, Mice, Cytoplasmic Vesicles, Microfilament Proteins, Oocytes, Animals, Biological Transport, Active, Formins, Nuclear Proteins, Female, Nerve Tissue Proteins, Actins, Mice, Mutant Strains
28 Research products, page 1 of 3
- 2011IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2019IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).295 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
