Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Molecular circuit involving KLK4 integrates androgen and mTOR signaling in prostate cancer

Authors: Yang, Jin; Su, Qu; Martina, Tesikova; Ling, Wang; Alexandr, Kristian; Gunhild M, Mælandsmo; Haiying, Kong; +12 Authors

Molecular circuit involving KLK4 integrates androgen and mTOR signaling in prostate cancer

Abstract

Significance All cancer lesions sustain alterations in signaling pathways, which are the drivers of disease initiation and progression. Study of altered signaling in cancer is thus important to develop more effective therapeutic regimens as well as better prognostic markers. In this study, we show that two of the most frequently altered signaling pathways in prostate cancer, the androgen receptor and the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways, are dependent on kallikrein related peptidase 4 (KLK4), whose expression is highly prostate enriched. Our results suggest that KLK4 has a central role in prostate cancer survival and that KLK4 silencing may have significant therapeutic efficacy.

Keywords

Male, Cell Death, Ribosomal Protein S6 Kinases, TOR Serine-Threonine Kinases, G1 Phase, Prostatic Neoplasms, Enzyme Activation, Receptors, Androgen, Gene Knockdown Techniques, Androgens, Humans, Kallikreins, Cell Division, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Top 10%
Top 10%
Top 10%
bronze