Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Calcium Restriction Allows cAMP Activation of the B-Raf/ERK Pathway, Switching Cells to a cAMP-dependent Growth-stimulated Phenotype

Authors: Tamio, Yamaguchi; Darren P, Wallace; Brenda S, Magenheimer; Scott J, Hempson; Jared J, Grantham; James P, Calvet;

Calcium Restriction Allows cAMP Activation of the B-Raf/ERK Pathway, Switching Cells to a cAMP-dependent Growth-stimulated Phenotype

Abstract

cAMP can be either mitogenic or anti-mitogenic, depending on the cell type. We demonstrated previously that cAMP inhibited the proliferation of normal renal epithelial cells and stimulated the proliferation of cells derived from the cysts of polycystic kidney disease (PKD) patients. The protein products of the genes causing PKD, polycystin-1 and polycystin-2, are thought to regulate intracellular calcium levels, suggesting that abnormal polycystin function may affect calcium signaling and thus cause a switch to the cAMP growth-stimulated phenotype. To test this hypothesis, we disrupted intracellular calcium mobilization by treating immortalized mouse M-1 collecting duct cells and primary cultures of human kidney epithelial cells with calcium channel blockers and by lowering extracellular calcium with EGTA. Calcium restriction for 3-5 h converted both cell types from a normal cAMP growth-inhibited phenotype to an abnormal cAMP growth-stimulated phenotype, characteristic of PKD. In M-1 cells, we showed that calcium restriction was associated with an elevation in B-Raf protein levels and cAMP-stimulated, Ras-dependent activation of B-Raf and ERK. Moreover, the activity of Akt, a negative regulator of B-Raf, was decreased by calcium restriction. Inhibition of Akt or phosphatidylinositol 3-kinase also allowed cAMP-dependent activation of B-Raf and ERK in normal calcium. These results suggest that calcium restriction causes an inhibition of the phosphatidylinositol 3-kinase/Akt pathway, which relieves the inhibition of B-Raf to allow the cAMP growth-stimulated phenotypic switch. Finally, M-1 cells stably overexpressing an inducible polycystin-1 C-terminal cytosolic tail construct were shown to exhibit a cAMP growth-stimulated phenotype involving B-Raf and ERK activation, which was reversed by the calcium ionophore A23187. We conclude that disruption of calcium mobilization in cells that are normally growth-inhibited by cAMP can derepress the B-Raf/ERK pathway, thus converting these cells to a phenotype that is growth-stimulated by cAMP.

Related Organizations
Keywords

Dose-Response Relationship, Drug, Ionophores, Blotting, Western, Membrane Proteins, Epithelial Cells, Calcium Channel Blockers, Kidney, Cyclic AMP-Dependent Protein Kinases, Cell Line, Enzyme Activation, Mice, Cyclic AMP, Animals, Humans, Calcium, Mitogen-Activated Protein Kinases, Egtazic Acid, Calcimycin, Cell Division, Cells, Cultured

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    301
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
301
Top 1%
Top 1%
Top 1%
gold