Glucocorticoid chronopharmacology promotes glucose metabolism in heart through a cardiomyocyte-autonomous transactivation program
Glucocorticoid chronopharmacology promotes glucose metabolism in heart through a cardiomyocyte-autonomous transactivation program
Circadian time of intake gates the cardioprotective effects of glucocorticoid administration in both healthy and infarcted hearts. The cardiomyocyte-specific glucocorticoid receptor (GR) and its cofactor, Krüppel-like factor 15 (KLF15), play critical roles in maintaining normal heart function in the long term and serve as pleiotropic regulators of cardiac metabolism. Despite this understanding, the cardiomyocyte-autonomous metabolic targets influenced by the concerted epigenetic action of the GR/KLF15 axis remain undefined. Here, we demonstrated the critical roles of the cardiomyocyte-specific GR and KLF15 in orchestrating a circadian-dependent glucose oxidation program within the heart. Combining integrated transcriptomics and epigenomics with cardiomyocyte-specific inducible ablation of GR or KLF15, we identified their synergistic role in the activation of adiponectin receptor expression (Adipor1) and the mitochondrial pyruvate complex (Mpc1/2), thereby enhancing insulin-stimulated glucose uptake and pyruvate oxidation. Furthermore, in obese diabetic (db/db) mice exhibiting insulin resistance and impaired glucose oxidation, light-phase prednisone administration, as opposed to dark-phase prednisone dosing, restored cardiomyocyte glucose oxidation and improved diastolic function. These effects were blocked by combined in vivo knockdown of GR and KLF15 levels in db/db hearts. In summary, this study leveraged the circadian-dependent cardioprotective effects of glucocorticoids to identify cardiomyocyte-autonomous targets for the GR/KLF15 axis in glucose metabolism.
- University of Cincinnati United States
- Gladstone Institutes United States
- Brown University United States
- Heart Institute United States
- Cincinnati Children's Hospital Medical Center United States
Male, Transcriptional Activation, Mice, Glucose, Receptors, Glucocorticoid, Kruppel-Like Transcription Factors, Animals, Myocytes, Cardiac, Insulin Resistance, Glucocorticoids, Research Article, Circadian Rhythm
Male, Transcriptional Activation, Mice, Glucose, Receptors, Glucocorticoid, Kruppel-Like Transcription Factors, Animals, Myocytes, Cardiac, Insulin Resistance, Glucocorticoids, Research Article, Circadian Rhythm
4 Research products, page 1 of 1
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
