Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Molecular Biol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Molecular Biology
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Yeast two-hybrid map of Arabidopsis TFIID

Authors: Shai J, Lawit; Kevin, O'Grady; William B, Gurley; Eva, Czarnecka-Verner;
Abstract

General transcription factor IID (TFIID) is a multisubunit protein complex involved in promoter recognition and is fundamental to the nucleation of the RNA polymerase II transcriptional preinitiation complex. TFIID is comprised of the TATA binding protein (TBP) and 12-15 TBP-associated factors (TAFs). While general transcription factors have been extensively studied in metazoans and yeast, little is known about the details of their structure and function in the plant kingdom. This work represents the first attempt to compare the structure of a plant TFIID complex with that determined for other organisms. While no TAF3 homolog has been observed in plants, at least one homolog has been identified for each of the remaining 14 TFIID subunits, including both TAF14 and TAF15 which have previously been shown to be unique to either yeast or humans. The presence of both TAFs 14 and 15 in plants suggests ancient roles for these proteins that were lost in metazoans and fungi, respectively. Yeast two-hybrid interaction assays resulted in a total of 65 binary interactions between putative subunits of Arabidopsis TFIID, including 26 contacts unique to plants. The interaction matrix of Arabidopsis TAFs is largely consistent with the three-lobed topological map for yeast TFIID, which suggests that the structure and composition of TFIID have been highly conserved among eukaryotes.

Related Organizations
Keywords

TATA-Binding Protein Associated Factors, Arabidopsis Proteins, Genetic Complementation Test, Arabidopsis, Protein Subunits, Two-Hybrid System Techniques, Yeasts, Protein Interaction Mapping, Transcription Factor TFIID, Cloning, Molecular, Protein Structure, Quaternary, Genome, Plant

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    31
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
31
Top 10%
Average
Average