Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression
Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression
A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21-q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of approximately 20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes.
- University of Nebraska-Lincoln United States
- University of Tennessee Health Science Center United States
Central Nervous System, Male, Quantitative Trait Loci, 610, Gene Expression, Mice, Inbred Strains, QH426-470, Amino Acyl-tRNA Synthetases, Mice, Databases, Genetic, Genetics, Animals, Genetic Predisposition to Disease, Meat Science, Crosses, Genetic, Behavior, Chromosome Mapping, Genetics and Genomics, Chromosomes, Mammalian, Phenotype, Animal Sciences, RNA, Female, RGS Proteins, Research Article
Central Nervous System, Male, Quantitative Trait Loci, 610, Gene Expression, Mice, Inbred Strains, QH426-470, Amino Acyl-tRNA Synthetases, Mice, Databases, Genetic, Genetics, Animals, Genetic Predisposition to Disease, Meat Science, Crosses, Genetic, Behavior, Chromosome Mapping, Genetics and Genomics, Chromosomes, Mammalian, Phenotype, Animal Sciences, RNA, Female, RGS Proteins, Research Article
22 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2022IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).90 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
