Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Virologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Virology
Article . 2003 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

The Coat Protein of Turnip Crinkle Virus Suppresses Posttranscriptional Gene Silencing at an Early Initiation Step

Authors: Qu, Feng; Ren, Tao; Morris, Thomas Jack;

The Coat Protein of Turnip Crinkle Virus Suppresses Posttranscriptional Gene Silencing at an Early Initiation Step

Abstract

ABSTRACT Posttranscriptional gene silencing (PTGS), or RNA silencing, is a sequence-specific RNA degradation process that targets foreign RNA, including viral and transposon RNA for destruction. Several RNA plant viruses have been shown to encode suppressors of PTGS in order to survive this host defense. We report here that the coat protein (CP) of Turnip crinkle virus (TCV) strongly suppresses PTGS. The Agrobacterium infiltration system was used to demonstrate that TCV CP suppressed the local PTGS as strongly as several previously reported virus-coded suppressors and that the action of TCV CP eliminated the small interfering RNAs associated with PTGS. We have also shown that the TCV CP must be present at the time of silencing initiation to be an effective suppressor. TCV CP was able to suppress PTGS induced by sense, antisense, and double-stranded RNAs, and it prevented systemic silencing. These data suggest that TCV CP functions to suppress RNA silencing at an early initiation step, likely by interfering the function of the Dicer-like RNase in plants.

Keywords

570, Brassica napus, Green Fluorescent Proteins, 630, Luminescent Proteins, Virology, RNA, Viral, Capsid Proteins, Carmovirus, RNA Interference, RNA, Messenger

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    260
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
260
Top 10%
Top 1%
Top 1%
gold