Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Kidney Internationalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Kidney International
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Kidney International
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Syntaxin 3 and Munc-18-2 in epithelial cells during kidney development

Authors: Lehtonen, Sanna; Riento, Kirsi; Olkkonen, Vesa M.; Lehtonen, Eero;

Syntaxin 3 and Munc-18-2 in epithelial cells during kidney development

Abstract

Differentiation of epithelial cells involves the assembly of polarized membrane transport machineries necessary for the generation and maintenance of the apical and basolateral membrane domains characteristic of this cell type. We have analyzed the expression patterns of vesicle-docking proteins of the syntaxin family in mouse kidney, focusing on syntaxin 3 and its interaction partner, the Sec1-related Munc-18-2.Expression patterns were studied by in situ hybridization and immunocytochemistry and the complex formation of syntaxin 3 and Munc-18-2 by coimmunoprecipitation and Western blotting.We have previously shown by in situ hybridization that Munc-18-2 is present in the proximal tubules and collecting ducts of embryonic day 17 mouse kidney. We compared this with the expression patterns of syntaxin 1A, 2, 3, 4, and 5, and found that syntaxin 3 was enriched in the same epithelial structures in which Munc-18-2 was abundant. By immunocytochemistry, the two proteins colocalized at the apical plasma membrane of proximal tubule and collecting duct epithelial cells, and they were shown to form a physical complex in the kidney. The expression of both proteins was up-regulated during kidney development. The most prominent changes in expression levels coincided with the differentiation of proximal tubules, suggesting a role in the generation of the highly active reabsorption machinery characterizing this segment of the nephron.The results show that Munc-18-2 and syntaxin 3 form a complex in vivo and suggest that they participate in epithelial cell differentiation and targeted vesicle transport processes in the developing kidney.

Related Organizations
Keywords

Macromolecular Substances, Nerve Tissue Proteins, Kidney, vesicle transport, Mice, Munc18 Proteins, Pregnancy, Animals, In Situ Hybridization, DNA Primers, renal epithelium, Base Sequence, Qa-SNARE Proteins, Cell Polarity, Gene Expression Regulation, Developmental, Membrane Proteins, Proteins, Cell Differentiation, Epithelial Cells, Immunohistochemistry, cell differentiation, Sec-1-related proteins, Nephrology, neonate development, transport, Mice, Inbred CBA, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Average
Top 10%
hybrid