Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Journal
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Journal
Article . 2010
versions View all 2 versions

Estrogen‐related receptor α and PGC‐1‐related coactivator constitute a novel complex mediating the biogenesis of functional mitochondria

Authors: Delphine, Mirebeau-Prunier; Soazig, Le Pennec; Caroline, Jacques; Naig, Gueguen; Julie, Poirier; Yves, Malthiery; Frédérique, Savagner;

Estrogen‐related receptor α and PGC‐1‐related coactivator constitute a novel complex mediating the biogenesis of functional mitochondria

Abstract

Mitochondrial biogenesis, which depends on nuclear as well as mitochondrial genes, occurs in response to increased cellular ATP demand. The nuclear transcriptional factors, estrogen‐related receptor α (ERRα) and nuclear respiratory factors 1 and 2, are associated with the coordination of the transcriptional machinery governing mitochondrial biogenesis, whereas coactivators of the peroxisome proliferator‐activated receptor γ coactivator‐1 (PGC‐1) family serve as mediators between the environment and this machinery. In the context of proliferating cells, PGC‐1‐related coactivator (PRC) is a member of the PGC‐1 family, which is known to act in partnership with nuclear respiratory factors, but no functional interference between PRC and ERRα has been described so far. We explored three thyroid cell lines, FTC‐133, XTC.UC1 and RO 82 W‐1, each characterized by a different mitochondrial content, and studied their behavior towards PRC and ERRα in terms of respiratory efficiency. Overexpression of PRC and ERRα led to increased respiratory chain capacity and mitochondrial mass. The inhibition of ERRα decreased cell growth and respiratory chain capacity in all three cell lines. However, the inhibition of PRC and ERRα produced a greater effect in the oxidative cell model, decreasing the mitochondrial mass and the phosphorylating respiration, whereas the nonphosphorylating respiration remained unchanged. We therefore hypothesize that the ERRα–PRC complex plays a role in arresting the cell cycle through the regulation of oxidative phosphorylation in oxidative cells, and through some other pathway in glycolytic cells.

Keywords

ERRalpha Estrogen-Related Receptor, Receptors, Estrogen, Cell Line, Tumor, Humans, Thyroid Neoplasms, Glycolysis, Oxidative Phosphorylation, Cell Proliferation, Mitochondria, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
bronze