Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2002 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

A Coregulatory Role for the TRAP-Mediator Complex in Androgen Receptor-mediated Gene Expression

Authors: Qianben, Wang; Dipali, Sharma; Yunsheng, Ren; Joseph D, Fondell;

A Coregulatory Role for the TRAP-Mediator Complex in Androgen Receptor-mediated Gene Expression

Abstract

The human thyroid hormone receptor-associated protein (TRAP)-Mediator complex was originally identified as a large multimeric complex that copurifies with the thyroid hormone receptor (TR) from HeLa cells and markedly enhances TR-mediated transcription in vitro. More recent studies have implicated TRAP-Mediator as a coactivator for a broad range of nuclear hormone receptors as well as other classes of transcriptional activators. Here we present evidence that TRAP-Mediator plays a functional role in androgen receptor (AR)-mediated transcription. We show that several subunits of the complex ligand-dependently coimmunoprecipitate with AR from both prostate cancer LNCaP cells and from HeLa cells stably transfected with AR. The 220-kDa subunit of the complex (TRAP220) can contact the ligand-binding domain of AR in vitro, possibly implicating TRAP220 involvement in targeting AR to the holocomplex. Consistent with a TRAP-Mediator coactivator role, transient overexpression of the TRAP220, TRAP170, and TRAP100 subunits enhanced ligand-dependent transcription by AR in cultured cells. Finally, chromatin immunoprecipitation assays show that TRAP220 is recruited to the androgen-responsive prostate-specific antigen gene promoter in vivo in ligand-stimulated LNCaP cells. Collectively, these data suggest that TRAP-Mediator may play an important coregulatory role in AR-mediated gene expression.

Keywords

Male, Mediator Complex, Receptors, Thyroid Hormone, Prostatic Neoplasms, RNA-Binding Proteins, Prostate-Specific Antigen, Chromatin, Gene Expression Regulation, Neoplastic, Mediator Complex Subunit 1, Protein Subunits, Bacterial Proteins, Antigens, Neoplasm, Receptors, Androgen, Trans-Activators, Tumor Cells, Cultured, Humans, Carrier Proteins, Promoter Regions, Genetic, HeLa Cells, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 10%
Top 10%
Top 10%
gold
Related to Research communities
Cancer Research