Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Cyclopentenone prostaglandins suppress activation of microglia: Down-regulation of inducible nitric-oxide synthase by 15-deoxy-Δ 12,14 -prostaglandin J 2

Authors: T V, Petrova; K T, Akama; L J, Van Eldik;

Cyclopentenone prostaglandins suppress activation of microglia: Down-regulation of inducible nitric-oxide synthase by 15-deoxy-Δ 12,14 -prostaglandin J 2

Abstract

Mechanisms leading to down-regulation of activated microglia and astrocytes are poorly understood, in spite of the potentially detrimental role of activated glia in neurodegeneration. Prostaglandins, produced both by neurons and glia, may serve as mediators of glial and neuronal functions. We examined the influence of cyclopentenone prostaglandins and their precursors on activated glia. As models of glial activation, production of inducible nitric-oxide synthase (iNOS) was studied in lipopolysaccharide-stimulated rat microglia, a murine microglial cell line BV-2, and IL-1β-stimulated rat astrocytes. Cyclopentenone prostaglandins were potent inhibitors of iNOS induction and were more effective than their precursors, prostaglandins E 2 and D 2 . 15-Deoxy-Δ 12,14 -prostaglandin J 2 (15d-PGJ 2 ) was the most potent prostaglandin among those tested. In activated microglia, 15d-PGJ 2 suppressed iNOS promoter activity, iNOS mRNA, and protein levels. The action of 15d-PGJ 2 does not appear to involve its nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) because troglitazone, a specific ligand of PPARγ, was unable to inhibit iNOS induction, and neither troglitazone nor 15d-PGJ 2 could stimulate the activity of a PPAR-dependent promoter in the absence of cotransfected PPARγ. 15d-PGJ 2 did not block nuclear translocation or DNA-binding activity of the transcription factor NFκB, but it did inhibit the activity of an NFκB reporter construct, suggesting that the mechanism of suppression of microglial iNOS by 15d-PGJ 2 may involve interference with NFκB transcriptional activity in the nucleus. Thus, our data suggest the existence of a novel pathway mediated by cyclopentenone prostaglandins, which may represent part of a feedback mechanism leading to the cessation of inflammatory glial responses in the brain.

Related Organizations
Keywords

Cell Nucleus, Lipopolysaccharides, Salmonella typhimurium, Prostaglandin D2, Recombinant Fusion Proteins, Nitric Oxide Synthase Type II, Epoprostenol, Gene Expression Regulation, Enzymologic, Cell Line, Rats, Kinetics, Astrocytes, Protein Biosynthesis, Animals, Microglia, RNA, Messenger, Cloning, Molecular, Nitric Oxide Synthase, Nitrites, Interleukin-1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    333
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
333
Top 10%
Top 1%
Top 0.1%
bronze