Powered by OpenAIRE graph

Identification of Rack1, EF-Tu and Rhodanese as Aging-Related Proteins in Human Colonic Epithelium by Proteomic Analysis

Authors: Hong, Yi; Xin-Hui, Li; Bin, Yi; Jie, Zheng; Guo, Zhu; Cui, Li; Mao-Yu, Li; +4 Authors

Identification of Rack1, EF-Tu and Rhodanese as Aging-Related Proteins in Human Colonic Epithelium by Proteomic Analysis

Abstract

The aging process of human colonic epithelium involves a slow decline in physiological vigor and an increasing susceptibility to age-related diseases, especially, colon cancer, but the mechanisms still remain to be elucidated. To reveal the molecular bases of colonic epithelial aging, a proteomic approach was used to screen for differential proteins in the human normal colonic epithelial tissues from young and old people. As a result, 17 differential proteins were identified by two-dimensional electrophoresis and mass spectrometry, and the partial differential proteins were confirmed by immunohistochemistry. Rack1, EF-Tu and Rhodanese, three validated differential proteins, were further investigated for their role in the in vitro cell senescence. Western blot showed that the expression of all the three proteins was downregulated in the senescent NIH/3T3 cells induced by D-galactose as compared to the control cells. Furthermore, knockdown of Rack1 by siRNA could promote NIH/3T3 cell senescence. Taken together, our results suggest that Rack1, EF-Tu and Rhodanese are aging-related proteins in human colonic epithelium, and injury of mitochondrial function and decline of antioxidant capability are important reasons for the aging of human colonic epithelium.

Related Organizations
Keywords

Proteomics, Colon, Blotting, Western, Galactose, Proteins, Peptide Elongation Factor Tu, Immunohistochemistry, Mass Spectrometry, Peptide Fragments, Neoplasm Proteins, Mice, GTP-Binding Proteins, NIH 3T3 Cells, Animals, Humans, Electrophoresis, Gel, Two-Dimensional, Intestinal Mucosa, RNA, Small Interfering, Cellular Senescence, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Top 10%