Attachment of VLDL Receptors to an Icosahedral Virus along the 5-fold Symmetry Axis: Multiple Binding Modes Evidenced by Fluorescence Correlation Spectroscopy
doi: 10.1021/bi700262w
pmid: 17472347
Attachment of VLDL Receptors to an Icosahedral Virus along the 5-fold Symmetry Axis: Multiple Binding Modes Evidenced by Fluorescence Correlation Spectroscopy
Human rhinoviruses (HRVs) are composed of 60 identical subunits, each comprising one copy of the viral capsid proteins VP1, 2, 3, and 4. Consequently, 60 symmetry-related epitopes are available for binding of antibodies or receptors. The minor receptor group of HRVs uses members of the low-density lipoprotein receptor family for cell entry. The ligand binding domains of these receptors are composed of various numbers of ligand binding repeats, and several of these modules within a single molecule are believed to attach simultaneously to the star-shaped dome at the 5-fold symmetry axis of the virus. Using fluorescence correlation spectroscopy (FCS), we have now determined the equilibrium binding constants and the mode of attachment of recombinant concatemers of ligand binding module 3 of the human very-low-density lipoprotein receptor to HRV2. We demonstrate that the avidity of the interaction drastically increases with the number of concatenated modules. For the trimer, the binding isotherm was biphasic, indicating that attachment of two and of three modules within the same molecule was resolved. The receptor consisting of seven repeats was found to bind most strongly, but a complete binding isotherm could not be established due to cross-linking of virions. The values of the dissociation constants were about 1 order of magnitude higher than those previously determined by using surface plasmon resonance techniques reflecting the different presentation of the binding partners. As compared to the concatemers, the natural receptors are composed of similar but not identical repeats; thus, cooperativity and different specificity of the ligand-binding modules allow for recognition of many ligands and viral serotypes. Due to the low concentrations and amounts of sample required, FCS is ideally suited for the determination of receptor binding parameters of viruses difficult to produce in high quantities and/or concentrations.
- Medical University of Vienna Austria
- University of Vienna Austria
- Vienna Biocenter Austria
- Max F. Perutz Laboratories Austria
Binding Sites, Rhinovirus, 1060 Biologie, Surface Plasmon Resonance, Substrate Specificity, Spectrometry, Fluorescence, Receptors, LDL, Humans, Receptors, Virus, 1060 Biology, Protein Binding
Binding Sites, Rhinovirus, 1060 Biologie, Surface Plasmon Resonance, Substrate Specificity, Spectrometry, Fluorescence, Receptors, LDL, Humans, Receptors, Virus, 1060 Biology, Protein Binding
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
