Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2007 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2007
versions View all 2 versions

Manganese Superoxide Dismutase Enhances the Invasive and Migratory Activity of Tumor Cells

Authors: Kip M, Connor; Nadine, Hempel; Kristin K, Nelson; Ganary, Dabiri; Aldo, Gamarra; James, Belarmino; Livingston, Van De Water; +2 Authors

Manganese Superoxide Dismutase Enhances the Invasive and Migratory Activity of Tumor Cells

Abstract

Abstract Clinically significant elevations in the expression of manganese superoxide dismutase (Sod2) are associated with an increased frequency of tumor invasion and metastasis in certain cancers. The aim of this study was to examine whether increases in Sod2 activity modulate the migratory potential of tumor cells, contributing to their enhanced metastatic behavior. Overexpression of Sod2 in HT-1080 fibrosarcoma cells significantly enhanced their migration 2-fold in a wound healing assay and their invasive potential 3-fold in a transwell invasion assay. Severity of invasion was directly correlated to Sod2 expression levels and this invasive phenotype was similarly observed in 253J bladder tumor cells, in which Sod expression resulted in a 3-fold increase in invasion compared with controls. Further, migration and invasion of the Sod2-expressing cells was inhibited following overexpression of catalase, indicating that the promigratory/invasive phenotype of Sod2-expressing cells is H2O2 dependent. Sod2 overexpression was associated with a loss of vinculin-positive focal adhesions that were recovered in cells coexpressing catalase. Tail vein injections of Sod2-GFP–expressing HT-1080 cells in NCR nude mice led to the development of pulmonary metastatic nodules displaying high Sod2-GFP expression. Isolated tumors were shown to retain high Sod2 activity in culture and elevated levels of the matrix degrading protein matrix metalloproteinase-1, and a promigratory phenotype was observed in a population of cells growing out from the tumor nodule. These findings suggest that the association between increased Sod2 activity and poor prognosis in cancer can be attributed to alterations in their migratory and invasive capacity. [Cancer Res 2007;67(21):10260–67]

Keywords

Male, Focal Adhesions, Lung Neoplasms, Superoxide Dismutase, Hydrogen Peroxide, Mice, Cell Movement, Cell Line, Tumor, Neoplasms, Animals, Humans, Neoplasm Invasiveness, Matrix Metalloproteinase 1, Reactive Oxygen Species

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    153
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
153
Top 10%
Top 10%
Top 10%
bronze