Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular and Cellular Cardiology
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

PKC-βII sensitizes cardiac myofilaments to Ca2+ by phosphorylating troponin I on threonine-144

Authors: Jeffrey Robbins; Sakthivel Sadayappan; Christopher M. Doede; Jeffery W. Walker; Jennifer E. Grant; Hao Wang;

PKC-βII sensitizes cardiac myofilaments to Ca2+ by phosphorylating troponin I on threonine-144

Abstract

Ventricular myocytes express Galphaq-coupled receptors that can mediate enhanced contractility by increasing the sensitivity of the contractile apparatus to Ca(2+). The precise mechanisms underlying this change have been difficult to define, in part because myofilament regulatory proteins contain multiple phosphorylation sites for protein kinase C (PKC), protein kinase A (PKA) and myosin light chain kinase (MLCK), with potentially opposing effects. MLCK increases whereas PKC and PKA have a strong tendency to decrease myofilament Ca(2+) sensitivity in myocardium. Here we show in mouse cardiac myocytes that PKC-betaII can increase Ca(2+) sensitivity of tension by a similar magnitude to MLCK but via a distinct mechanism. For PKC-betaII (32)P-incorporation occurred primarily into cardiac troponin I (cTnI) and functional effects were highly dependent upon mutations in phosphorylation sites of cTnI. Replacement of serines-23/24 (PKA sites) with alanine prevented cross-phosphorylation of these sites, reduced (32)P-incorporation into cTnI by half and resulted in myofilament Ca(2+) sensitization rather than desensitization in response to PKC-betaII. Replacement of three additional sites on cTnI, serines-43/45 and threonine-144, eliminated PKC-betaII-mediated Ca(2+) sensitization and the remaining (32)P-incorporation into cTnI. A preference for PKC-betaII phosphorylation of threonine-144 in the intact filament lattice was revealed by differential stable isotope labeling and supported by an analysis of peptide phosphorylation. The results suggest that threonine-144 within the critical inhibitory domain of cTnI represents a novel site of regulation of myofilament Ca(2+) sensitivity by PKC-betaII, with possible implications for chronically stressed or diseased hearts.

Keywords

Threonine, Binding Sites, Myosin Light Chains, Sequence Homology, Amino Acid, Amino Acid Motifs, Molecular Sequence Data, Troponin I, Mice, Transgenic, Actin Cytoskeleton, Mice, Contractile Proteins, Myofibrils, Protein Kinase C beta, Animals, Calcium, Myocytes, Cardiac, Amino Acid Sequence, Phosphorylation, Peptides, Protein Kinase C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    83
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
83
Top 10%
Top 10%
Top 10%