Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Investiga...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Investigative Dermatology
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Investigative Dermatology
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Transient Expression of Ephrin B2 in Perinatal Skin Is Required for Maintenance of Keratinocyte Homeostasis

Authors: Egawa, Gyohei; Osawa, Masatake; Uemura, Akiyoshi; Miyachi, Yoshiki; Nishikawa, Shin-Ichi;

Transient Expression of Ephrin B2 in Perinatal Skin Is Required for Maintenance of Keratinocyte Homeostasis

Abstract

The formation of functional skin entails multiple key signals that are implicated repeatedly in distinct processes during embryogenesis. Although Eph receptors and their membrane-bound ephrin ligands play a role in a wide variety of embryonic processes, their function in skin development has not been addressed. Here, we show that ephrin B2 is transiently expressed in hair buds during embryogenesis and in dermal mesenchymal cells during the perinatal period. Keratinocyte-specific ephrin B2-targeted mutant mice exhibit no skin phenotype, whereas postnatal systemic ephrin B2 ablation results in the enhancement of keratinocyte proliferation. Although the same treatment results in a defect of vascular remodeling, our analyses showed that the keratinocyte phenotype is not caused by hypoxia due to vascular defects. Interestingly, we found an enhanced expression of IL-1 family molecules, which have been implicated in the regulation of keratinocyte proliferation. On the basis of these observations, we propose that the transient expression of ephrin B2 in perinatal dermal mesenchymal cells plays a role in adjusting the activity of the mesenchymal microenvironment that regulates proliferation of keratinocytes.

Keywords

Keratinocytes, Ephrin-B2, Mice, Transgenic, Cell Biology, Dermatology, Biochemistry, Mice, Mutant Strains, Mesoderm, Mice, Inbred C57BL, Mice, Animals, Newborn, Morphogenesis, Animals, Homeostasis, Molecular Biology, Cell Proliferation, Interleukin-1, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Top 10%
hybrid