Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

A novel motif governs APC-dependent degradation of Drosophila ORC1 in vivo

Authors: Marito, Araki; Hongtao, Yu; Maki, Asano;

A novel motif governs APC-dependent degradation of Drosophila ORC1 in vivo

Abstract

Regulated degradation plays a key role in setting the level of many factors that govern cell cycle progression. In Drosophila, the largest subunit of the origin recognition complex protein 1 (ORC1) is degraded at the end of M phase and throughout much of G1 by anaphase-promoting complexes (APC) activated by Fzr/Cdh1. We show here that none of the previously identified APC motifs targets ORC1 for degradation. Instead, a novel sequence, the O-box, is necessary and sufficient to direct Fzr/Cdh1-dependent polyubiquitylation in vitro and degradation in vivo. The O-box is similar to but distinct from the well characterized D-box. Finally, we show that O-box motifs in two other proteins, Drosophila Abnormal Spindle and Schizosaccharomyces pombe Cut2, contribute to Cdh1-dependent polyubiquitylation in vitro, suggesting that the O-box may mediate degradation of a variety of cell cycle factors.

Keywords

Ubiquitin, Amino Acid Motifs, G1 Phase, Origin Recognition Complex, Ubiquitin-Protein Ligase Complexes, Cell Cycle Proteins, Anaphase-Promoting Complex-Cyclosome, Cdh1 Proteins, Securin, Schizosaccharomyces, Animals, Drosophila Proteins, Drosophila, Schizosaccharomyces pombe Proteins, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Average
Top 10%
Top 10%
Published in a Diamond OA journal