Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Crystal Structure of Lsm3 Octamer from Saccharomyces cerevisiae: Implications for Lsm Ring Organisation and Recruitment

Authors: Nishen, Naidoo; Stephen J, Harrop; Meghna, Sobti; Paul A, Haynes; Blair R, Szymczyna; James R, Williamson; Paul M G, Curmi; +1 Authors

Crystal Structure of Lsm3 Octamer from Saccharomyces cerevisiae: Implications for Lsm Ring Organisation and Recruitment

Abstract

Sm and Sm-like (Lsm) proteins are core components of the ribonucleoprotein complexes essential to key nucleic acid processing events within the eukaryotic cell. They assemble as polyprotein ring scaffolds that have the capacity to bind RNA substrates and other necessary protein factors. The crystal structure of yeast Lsm3 reveals a new organisation of the L/Sm beta-propeller ring, containing eight protein subunits. Little distortion of the characteristic L/Sm fold is required to form the octamer, indicating that the eukaryotic Lsm ring may be more pliable than previously thought. The homomeric Lsm3 octamer is found to successfully recruit Lsm6, Lsm2 and Lsm5 directly from yeast lysate. Our crystal structure shows the C-terminal tail of each Lsm3 subunit to be engaged in connections across rings through specific beta-sheet interactions with elongated loops protruding from neighbouring octamers. While these loops are of distinct length for each Lsm protein and generally comprise low-complexity polar sequences, several Lsm C-termini comprise hydrophobic sequences suitable for beta-sheet interactions. The Lsm3 structure thus provides evidence for protein-protein interactions likely utilised by the highly variable Lsm loops and termini in the recruitment of RNA processing factors to mixed Lsm ring scaffolds. Our coordinates also provide updated homology models for the active Lsm[1-7] and Lsm[2-8] heptameric rings.

Related Organizations
Keywords

Models, Molecular, Magnetic Resonance Spectroscopy, Saccharomyces cerevisiae Proteins, Sequence Homology, Amino Acid, Molecular Sequence Data, RNA-Binding Proteins, RNA, Fungal, Saccharomyces cerevisiae, Crystallography, X-Ray, Models, Biological, Protein Structure, Secondary, Protein Structure, Tertiary, Amino Acid Sequence, Dimerization, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%