Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioinformationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformation
Article . 2019 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioinformation
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/dy...
Other literature type . 2019
Data sources: Datacite
https://dx.doi.org/10.60692/da...
Other literature type . 2019
Data sources: Datacite
versions View all 5 versions

Insights into evolutionary interaction patterns of the 'Phosphorylation Activation Segment' in kinase

رؤى حول أنماط التفاعل التطوري لـ "شريحة تنشيط الفسفرة" في الكيناز
Authors: Črtomir Podlipnik; Aziz Aboulmouhajir; Adil Ahiri; Hocine Garmes;

Insights into evolutionary interaction patterns of the 'Phosphorylation Activation Segment' in kinase

Abstract

Nous nous intéressons à l'étude de la phosphorylation de la boucle d'activation de la kinase, en distinguant le passage de la forme non phosphorylée à la forme phosphorylée sans allostérisation. Nous avons réalisé une étude d'interaction pour retracer le changement des interactions entre le segment d'activation et le noyau catalytique de la kinase, avant et après la phosphorylation. Les résultats montrent que les changements structuraux sont principalement dus à l'attraction entre le groupe phosphate et les groupes guanidine des chaînes latérales arginine de la poche RD, qui sont constituées principalement de groupes guanidine de la boucle catalytique, de la β9 et de l'hélice αC. Cette attraction provoque la propagation de la variation structurelle du segment d'activation, principalement vers le N-terminal. Les variations structurales ne sont pas faites sur tous les acides aminés du segment d'activation ; elles sont conditionnées par l'existence de deux feuillets bêta stabilisant la boucle lors de la phosphorylation. La première, la feuille β6-β9, est généralement présente dans la plupart des kinases ; la seconde, β10-β11, est formée en raison de l'interaction entre les acides aminés de la chaîne principale de la boucle d'activation et la boucle αEF/αF.

Nos interesa estudiar la fosforilación del bucle de activación de la quinasa, distinguiendo el paso de la forma no fosforilada a la fosforilada sin alosteria. Realizamos un estudio de interacción para rastrear el cambio de interacciones entre el segmento de activación y el núcleo catalítico de la quinasa, antes y después de la fosforilación. Los resultados muestran que los cambios estructurales se deben principalmente a la atracción entre el grupo fosfato y los grupos guanidina de las cadenas laterales de arginina del bolsillo RD, que están constituidos principalmente por grupos guanidina del bucle catalítico, el β9 y la hélice αC. Esta atracción provoca la propagación de la variación estructural del segmento de activación, principalmente hacia el N-terminal. Las variaciones estructurales no se realizan en todos los aminoácidos del segmento de activación; están condicionadas por la existencia de dos láminas beta que estabilizan el bucle durante la fosforilación. La primera,la lámina β6-β9 suele estar presente en la mayoría de las quinasas; la segunda, β10-β11 se forma debido a la interacción entre los aminoácidos de la cadena principal del bucle de activación y el bucle αEF/αF.

We are interested in studying the phosphorylation of the kinase activation loop, distinguishing the passage from the unphosphorylated to the phosphorylated form without allostery. We performed an interaction study to trace the change of interactions between the activation segment and the kinase catalytic core, before and after phosphorylation. Results show that the structural changes are mainly due to the attraction between the phosphate group and guanidine groups of the arginine side chains of RD-pocket, which are constituted mainly of guanidine groups of the catalytic loop, the β9, and the αC helix. This attraction causes propagation of structural variation of the activation segment, principally towards the N-terminal. The structural variations are not made on all the amino acids of the activation segment; they are conditioned by the existence of two beta sheets stabilizing the loop during phosphorylation. The first,β6-β9 sheet is usually present in most of the kinases; the second, β10-β11 is formed due to the interaction between the main chain amino acids of the activation loop and the αEF/αF loop.

نحن مهتمون بدراسة فسفرة حلقة تنشيط الكيناز، وتمييز المقطع من غير الفسفوريل إلى الشكل الفسفوريل دون أي تجاعيد. أجرينا دراسة تفاعل لتتبع تغير التفاعلات بين جزء التنشيط والنواة الحفازة للكايناز، قبل وبعد الفسفرة. تظهر النتائج أن التغييرات الهيكلية ترجع أساسًا إلى الجاذبية بين مجموعة الفوسفات ومجموعات الجوانيدين للسلاسل الجانبية للأرجينين لجيب RD، والتي تتكون أساسًا من مجموعات الجوانيدين للحلقة الحفازة، β 9، ولولب αC. يتسبب هذا الجذب في انتشار التباين الهيكلي لجزء التنشيط، بشكل أساسي نحو الطرف N. لا يتم إجراء الاختلافات الهيكلية على جميع الأحماض الأمينية لمقطع التنشيط ؛ فهي مشروطة بوجود صفحتين بيتا لتثبيت الحلقة أثناء الفسفرة. عادة ما تكون الورقة الأولى، β 6 - β 9 موجودة في معظم الكيناز ؛ الثانية، β 10 - β 11 تتشكل بسبب التفاعل بين الأحماض الأمينية السلسلة الرئيسية لحلقة التنشيط وحلقة αEF/αF.

Keywords

Kinase, Cell biology, Biophysics, Biochemistry, Protein kinase A, Stereochemistry, Biochemistry, Genetics and Molecular Biology, FOS: Mathematics, Phosphorylation, Molecular Biology, Biology, Guanidine, Protein Structure Prediction and Analysis, Life Sciences, Cell Biology, Regulation and Function of Microtubules in Cell Division, Chemistry, Combinatorics, Molecular Mechanisms of Ras Signaling Pathways, Protein Kinases, Loop (graph theory), Mathematics, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
gold