Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2004 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Role for ELOVL3 and Fatty Acid Chain Length in Development of Hair and Skin Function

Authors: Rolf, Westerberg; Petr, Tvrdik; Anne-Birgitte, Undén; Jan-Erik, Månsson; Lars, Norlén; Andreas, Jakobsson; Walter H, Holleran; +6 Authors

Role for ELOVL3 and Fatty Acid Chain Length in Development of Hair and Skin Function

Abstract

Very little is known about the in vivo regulation of mammalian fatty acid chain elongation enzymes as well as the role of specific fatty acid chain length in cellular responses and developmental processes. Here, we report that the Elovl3 gene product, which belongs to a highly conserved family of microsomal enzymes involved in the formation of very long chain fatty acids, revealed a distinct expression in the skin that was restricted to the sebaceous glands and the epithelial cells of the hair follicles. By disruption of the Elovl3 gene by homologous recombination in mouse, we show that ELOVL3 participates in the formation of specific neutral lipids that are necessary for the function of the skin. The Elovl3-ablated mice displayed a sparse hair coat, the pilosebaceous system was hyperplastic, and the hair lipid content was disturbed with exceptionally high levels of eicosenoic acid (20:1). This was most prominent within the triglyceride fraction where fatty acids longer than 20 carbon atoms were almost undetectable. A functional consequence of this is that Elovl3-ablated mice exhibited a severe defect in water repulsion and increased trans-epidermal water loss.

Keywords

Male, Fatty Acid Elongases, Fatty Acids, Membrane Proteins, DNA, Embryo, Mammalian, Lipid Metabolism, Carbon, Mass Spectrometry, Blotting, Southern, Mice, Blastocyst, Cholesterol, Acetyltransferases, Animals, Female, Chromatography, Thin Layer, In Situ Hybridization, Gene Library, Hair

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    175
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
175
Top 1%
Top 10%
Top 10%
gold