Energy landscape of the SARS-CoV-2 reveals extensive conformational heterogeneity
Energy landscape of the SARS-CoV-2 reveals extensive conformational heterogeneity
Cryo-electron microscopy (cryo-EM) has produced a number of structural models of the SARS-CoV-2 spike, already prompting biomedical outcomes. However, these reported models and their associated electrostatic potential maps represent an unknown admixture of conformations stemming from the underlying energy landscape of the spike protein. As with any protein, some of the spike's conformational motions are expected to be biophysically relevant, but cannot be interpreted only by static models. Using experimental cryo-EM images, we present the energy landscape of the glycosylated spike protein, and identify the diversity of low-energy conformations in the vicinity of its open (so called 1RBD-up) state. The resulting atomic refinement reveal global and local molecular rearrangements that cannot be inferred from an average 1RBD-up cryo-EM model. Here we report varied degrees of "openness" in global conformations of the 1RBD-up state, not revealed in the single-model interpretations of the density maps, together with conformations that overlap with the reported models. We discover how the glycan shield contributes to the stability of these low-energy conformations. Five out of six binding sites we analyzed, including those for engaging ACE2, therapeutic mini-proteins, linoleic acid, two different kinds of antibodies, switch conformations between their known apo- and holo-conformations, even when the global spike conformation is 1RBD-up. This apo-to-holo switching is reminiscent of a conformational preequilibrium. We found only one binding site, namely that of AB-C135 remains in apo state within all the sampled free energy-minimizing models, suggesting an induced fit mechanism for the docking of this antibody to the spike.
- Arizona State University United States
- University of Wisconsin–Milwaukee United States
- University of Wisconsin System United States
- SUNY at Buffalo United States
- University of Wisconsin-Milwaukee United States
Manifold machine learning, QH301-705.5, Molecular dynamics, Spike protein, Biology (General), Free energy landscape, Cryo-EM, Research Article
Manifold machine learning, QH301-705.5, Molecular dynamics, Spike protein, Biology (General), Free energy landscape, Cryo-EM, Research Article
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
