Abstract 489: Identification And In-silico Analysis Of Pathogenic Non-synonymous Snps Of Human Sos1 Protein In Noonan Syndrome
Abstract 489: Identification And In-silico Analysis Of Pathogenic Non-synonymous Snps Of Human Sos1 Protein In Noonan Syndrome
Introduction: Noonan syndrome is a genetic disorder (autosomal dominant) characterized by short stature, congenital heart disease, bleeding problems, developmental delays, and skeletal malformation. It is mainly caused by a single nucleotide alteration in four genes PTPN11, SOS1, RAF1, and KRAS . In this study, we computationally analyzed the SOS1 gene to identify the pathogenic non-synonymous single nucleotide polymorphisms (nsSNPs), which is known to cause Noonan syndrome. Hypothesis: We hypothesize that in-silico analysis of human SOS1 mutations in Noonan syndrome would be a promising predictor to study the post-translational modifications. Methods and Results: The variant information of SOS1 was collected from the dbSNP database and the literature review on Noonan syndrome. They were further analyzed by in-silico tools such as I-Mutant, iPTREE-STAB, and MutPred for their structural and functional properties. We found that 11 nsSNPs are more pathogenic for Noonan syndrome. The 3D comparative protein of 11 nsSNPs with its wild-type SOS1 was modeled by using I-Tasser and validated via ERRAT and RAMPAGE. The protein-protein interactions of SOS1, GATA4, TNNT2, and ACTN2 were analyzed using STRING, which showed that HRAS was intermediate between SOS1 and ACTN2 (Fig. 1) . Conclusion: This is the first in-silico study of the SOS1 variant with Noonan syndrome. We proposed that this 11 nsSNPs are the most pathogenic variant of SOS1 , which helps to screen the Noonan patient. Furthermore, our results are promising to study the gain/loss of post-translational modification (PTM) by mutation in cardiac genes and helps to explore the novel molecular pathways.$graphic_{DB5B0E7D-4DA6-4569-A16F-E05B2C9C4D2F}$$
- University of Tennessee Health Science Center United States
- University of Tennessee at Knoxville United States
7 Research products, page 1 of 1
- 2002IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2000IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
