Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Cell
Article . 2000 . Peer-reviewed
Data sources: Crossref
The Plant Cell
Article . 2000
versions View all 4 versions

Resistance to Turnip Crinkle Virus in Arabidopsis Is Regulated by Two Host Genes and Is Salicylic Acid Dependent but NPR1, Ethylene, and Jasmonate Independent

Authors: P, Kachroo; K, Yoshioka; J, Shah; H K, Dooner; D F, Klessig;

Resistance to Turnip Crinkle Virus in Arabidopsis Is Regulated by Two Host Genes and Is Salicylic Acid Dependent but NPR1, Ethylene, and Jasmonate Independent

Abstract

Inoculation of turnip crinkle virus (TCV) on the resistant Arabidopsis ecotype Dijon (Di-17) results in the development of a hypersensitive response (HR) on the inoculated leaves. To assess the role of the recently cloned HRT gene in conferring resistance, we monitored both HR and resistance (lack of viral spread to systemic tissues) in the progeny of a cross between resistant Di-17 and susceptible Columbia plants. As expected, HR development segregated as a dominant trait that corresponded with the presence of HRT. However, all of the F(1) plants and three-fourths of HR(+) F(2) plants were susceptible to the virus. These results suggest the presence of a second gene, termed RRT, that regulates resistance to TCV. The allele present in Di-17 appears to be recessive to the allele or alleles present in TCV-susceptible ecotypes. We also demonstrate that HR formation and TCV resistance are dependent on salicylic acid but not on ethylene or jasmonic acid. Furthermore, these phenomena are unaffected by mutations in NPR1. Thus, TCV resistance requires a yet undefined salicylic acid-dependent, NPR1-independent signaling pathway.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Base Sequence, Arabidopsis, Cyclopentanes, Ethylenes, Genes, Plant, Fungal Proteins, Carmovirus, Oxylipins, Salicylic Acid, Protein Kinases, DNA Primers, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    233
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
233
Top 10%
Top 1%
Top 1%
bronze