Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation
Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation
Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or posttranscriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3', 5'-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development.
- King Abdullah University of Science and Technology Saudi Arabia
- Donald Danforth Plant Science Center United States
Arabidopsis Proteins, Arabidopsis, Nuclear Proteins, Plant Roots, Hypocotyl, Phosphoric Monoester Hydrolases, Lateral root, Light signaling, PAP, XRN4, Basic-Leucine Zipper Transcription Factors, Nucleotidases, RNA silencing, Abscisic Acid, Signal Transduction
Arabidopsis Proteins, Arabidopsis, Nuclear Proteins, Plant Roots, Hypocotyl, Phosphoric Monoester Hydrolases, Lateral root, Light signaling, PAP, XRN4, Basic-Leucine Zipper Transcription Factors, Nucleotidases, RNA silencing, Abscisic Acid, Signal Transduction
9 Research products, page 1 of 1
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
