Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2012 . Peer-reviewed
Data sources: Crossref
Development
Article . 2012
versions View all 2 versions

Notch-mediated patterning and cell fate allocation of pancreatic progenitor cells

Authors: Solomon, Afelik; Xiaoling, Qu; Edy, Hasrouni; Michael A, Bukys; Tye, Deering; Stephan, Nieuwoudt; William, Rogers; +2 Authors

Notch-mediated patterning and cell fate allocation of pancreatic progenitor cells

Abstract

Early pancreatic morphogenesis is characterized by the transformation of an uncommitted pool of pancreatic progenitor cells into a branched pancreatic epithelium that consists of ‘tip’ and ‘trunk’ domains. These domains have distinct molecular signatures and differentiate into distinct pancreatic cell lineages. Cells at the branched tips of the epithelium develop into acinar cells, whereas cells in the trunk subcompartment differentiate into endocrine and duct cells. Recent genetic analyses have highlighted the role of key transcriptional regulators in the specification of these subcompartments. Here, we analyzed in mice the role of Notch signaling in the patterning of multipotent pancreatic progenitor cells through mosaic overexpression of a Notch signaling antagonist, dominant-negative mastermind-like 1, resulting in a mixture of wild-type and Notch-suppressed pancreatic progenitor cells. We find that attenuation of Notch signaling has pronounced patterning effects on multipotent pancreatic progenitor cells prior to terminal differentiation. Relative to the wild-type cells, the Notch-suppressed cells lose trunk marker genes and gain expression of tip marker genes. The Notch-suppressed cells subsequently differentiate into acinar cells, whereas duct and endocrine populations are formed predominantly from the wild-type cells. Mechanistically, these observations could be explained by a requirement of Notch for the expression of the trunk determination gene Nkx6.1. This was supported by the finding of direct binding of RBP-jκ to the Nkx6.1 proximal promoter.

Keywords

Homeodomain Proteins, Chromatin Immunoprecipitation, Receptors, Notch, Stem Cells, Cell Differentiation, Flow Cytometry, Real-Time Polymerase Chain Reaction, Immunohistochemistry, Mice, Immunoglobulin J Recombination Signal Sequence-Binding Protein, Animals, Pancreas, Cells, Cultured, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
bronze