Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Acta Crystallographi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Crystallographica Section D Biological Crystallography
Article . 1998 . Peer-reviewed
License: IUCr Copyright and Licensing Policy
Data sources: Crossref
versions View all 2 versions

Crystallization and structure solution of p53 (residues 326–356) by molecular replacement using an NMR model as template

Authors: Peer R. E. Mittl; Markus G. Grütter; Patrick Chène;

Crystallization and structure solution of p53 (residues 326–356) by molecular replacement using an NMR model as template

Abstract

The molecular replacement method is a powerful technique for crystal structure solution but the use of NMR structures as templates often causes problems. In this work the NMR structure of the p53 tetramerization domain has been used to solve the crystal structure by molecular replacement. Since the rotation- and translation-functions were not sufficiently clear, additional information about the symmetry of the crystal and the protein complex was used to identify correct solutions. The three-dimensional structure of residues 326–356 was subsequently refined to a final R factor of 19.1% at 1.5 Å resolution.

Related Organizations
Keywords

Models, Molecular, Solutions, Magnetic Resonance Spectroscopy, Molecular Structure, Templates, Genetic, Tumor Suppressor Protein p53, Crystallization, Protein Structure, Tertiary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 10%