Lung tumorigenesis associated with erb-B-2 and erb-B-3 overexpression in human erb-B-3 transgenic mice is enhanced by methylnitrosourea
pmid: 12483526
Lung tumorigenesis associated with erb-B-2 and erb-B-3 overexpression in human erb-B-3 transgenic mice is enhanced by methylnitrosourea
Erb-B-3 overexpression is associated with poor prognosis in non-small cell lung cancer and is often overexpressed in breast cancers. MMTVhuman-erb-B-3 transgenic mice were generated to evaluate the impact of erb-B-3 overexpression on lung and mammary gland tumorigenesis. These transgenic mice developed a high incidence of lung adenocarcinomas but not mammary gland tumors. The tumors overexpressed transgenic human [h]-erb-B-3 but also overexpressed endogenous erb-B-2, indicating that the heterodimer of h-erb-B-3-erb-B-2 was required for proliferative signal transduction to the nucleus. Lung tumor latency was shorter and the incidence higher in erb-B-3 transgenic mice treated with the methylating agent, methylnitrosourea [MNU]. In MNU treated mice, K-ras activating point mutations in codon 12, synergized with h-erb-B-3 in lung tumorogenesis. In bitransgenic MMTVrat-erb-B2/MMTV-human-erb-B-3 mice, lung tumor latency was also significantly shortened. Unlike over-expression of rat-erb-B-2, overexpression of h-erb-B-3 did not alter the incidence or latency of mammary tumors. Coupled erb-B-2 and erb-B-3 overexpression as well as K-ras activation induced signaling through mitogen-activated protein kinase (MAPK). This animal model links erb-B-3 with lung cancer, suggests that erb-B-2 and erb-B-3 heterodimerization is a necessary intermediate, and documents latency shortening by methylating agent-induced mutation of K-ras. This erb-B-3 mouse lung cancer model will help dissect genetic changes in lung tumorigenesis and may be useful for chemoprevention studies.
- University Hospitals of Cleveland United States
- University of California, Davis United States
- Prisma Health United States
- Case Western Reserve University United States
Lung Neoplasms, Genes, erbB, Methylnitrosourea, Mice, Transgenic, Genes, erbB-2, Mice, Genes, ras, Carcinoma, Non-Small-Cell Lung, Mutation, Animals, Humans, Transgenes
Lung Neoplasms, Genes, erbB, Methylnitrosourea, Mice, Transgenic, Genes, erbB-2, Mice, Genes, ras, Carcinoma, Non-Small-Cell Lung, Mutation, Animals, Humans, Transgenes
28 Research products, page 1 of 3
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).18 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
