Phagocytes Produce 5-Chlorouracil and 5-Bromouracil, Two Mutagenic Products of Myeloperoxidase, in Human Inflammatory Tissue
pmid: 12707270
Phagocytes Produce 5-Chlorouracil and 5-Bromouracil, Two Mutagenic Products of Myeloperoxidase, in Human Inflammatory Tissue
Oxidative damage to DNA has been implicated in carcinogenesis during chronic inflammation. Epidemiological and biochemical studies suggest that one potential mechanism involves myeloperoxidase, a hemeprotein secreted by human phagocytes. In this study, we demonstrate that human neutrophils use myeloperoxidase to oxidize uracil to 5-chlorouracil in vitro. Uracil chlorination by myeloperoxidase or reagent HOCl exhibited an unusual pH dependence, being minimal at pH approximately 5, but increasing markedly under either acidic or mildly basic conditions. This bimodal curve suggests that myeloperoxidase initially produces HOCl, which subsequently chlorinates uracil by acid- or base-catalyzed reactions. Human neutrophils use myeloperoxidase and H2O2 to chlorinate uracil, suggesting that nucleobase halogenation reactions may be physiologically relevant. Using a sensitive and specific mass spectrometric method, we detected two products of myeloperoxidase, 5-chlorouracil and 5-bromouracil, in neutrophil-rich human inflammatory tissue. Myeloperoxidase is the most likely source of 5-chlorouracil in vivo because halogenated uracil is a specific product of the myeloperoxidase system in vitro. In contrast, previous studies have demonstrated that 5-bromouracil could be generated by either eosinophil peroxidase or myeloperoxidase, which preferentially brominates uracil at plasma concentrations of halide and under moderately acidic conditions. These observations indicate that the myeloperoxidase system promotes nucleobase halogenation in vivo. Because 5-chlorouracil and 5-bromouracil can be incorporated into nuclear DNA, and these thymine analogs are well known mutagens, our observations raise the possibility that halogenation reactions initiated by phagocytes provide one pathway for mutagenesis and cytotoxicity at sites of inflammation.
- University of Mary United States
- University of Washington United States
- Washington University in St. Louis United States
Inflammation, Bromouracil, Phagocytes, Neutrophils, HL-60 Cells, Hydrogen-Ion Concentration, Gas Chromatography-Mass Spectrometry, Hypochlorous Acid, Mutagenesis, Humans, Uracil, Peroxidase
Inflammation, Bromouracil, Phagocytes, Neutrophils, HL-60 Cells, Hydrogen-Ion Concentration, Gas Chromatography-Mass Spectrometry, Hypochlorous Acid, Mutagenesis, Humans, Uracil, Peroxidase
3 Research products, page 1 of 1
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).142 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
