Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plant Molecular Biol...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Plant Molecular Biology
Article . 2003 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions

Genome-wide gene expression in an Arabidopsis cell suspension

Authors: Margit, Menges; Lars, Hennig; Wilhelm, Gruissem; James A H, Murray;

Genome-wide gene expression in an Arabidopsis cell suspension

Abstract

Plant cell suspension cultures are invaluable models for the study of cellular processes. Here we develop the recently described Arabidopsis suspension culture MM2d as a transcript profiling platform by means of Affymetrix ATH1 microarrays. Analysis of gene expression profiles during normal culture growth, during synchronous cell cycle re-entry and during synchronous cell cycle progression provides a unique integrated view of gene expression responses in a higher-plant system. Particularly striking is that expression of over 14 000 genes belonging to all defined categories can be reliably detected, suggesting that integrated and comparative analysis of data sets derived from transcript profiling of cultures is a powerful approach to identify candidate components involved in a wide range of biological processes. Combinatorial analysis of independent cell cycle synchrony methods allows the identification of genes that are apparently cell-cycle-regulated but are most likely responding to the induction of synchrony. We thus present an integrated genome-wide view of the transcriptional profile of a plant suspension culture and identify a refined set of 1082 cell cycle regulated genes largely independent of synchrony method.

Keywords

Aphidicolin, Gene Expression Regulation, Plant, Gene Expression Profiling, Cell Cycle, Arabidopsis, Cluster Analysis, Cell Division, Cells, Cultured, Genome, Plant, Oligonucleotide Array Sequence Analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    186
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
186
Top 10%
Top 1%
Top 1%
Related to Research communities
INRAE