Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
Cancer Research
Article . 2007 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2007
versions View all 2 versions

Oncogenic Potential of the miR-106-363 Cluster and Its Implication in Human T-Cell Leukemia

Authors: Séverine, Landais; Sébastien, Landry; Philippe, Legault; Eric, Rassart;

Oncogenic Potential of the miR-106-363 Cluster and Its Implication in Human T-Cell Leukemia

Abstract

Abstract We previously reported the identification of the Kis2 common retrovirus integration site, located on mouse chromosome X, in radiation leukemia virus–induced T-cell leukemias. Tumors with a provirus at the Kis2 locus overexpressed a novel noncoding RNA (ncRNA) with a complex splicing pattern and no polyA tail. Database upgrade revealed the presence of a microRNA (miRNA) cluster, miR-106-363, just downstream of the Kis2 ncRNAs. We found that Kis2 ncRNAs are the pri-miRNA of miR-106-363, and we present evidence that Kis2 ncRNA overexpression in mouse tumors results in miR-106a, miR-19b-2, miR-92-2, and miR-20b accumulation. We show the oncogenic potential of those miRNAs in anchorage independence assay and confirm pri-miR-106-363 overexpression in 46% of human T-cell leukemias tested. This overexpression contributes in rising miR-92 and miR-19 levels, as this is the case for miR-17-92 cluster overexpression. Furthermore, we identified myosin regulatory light chain–interacting protein, retinoblastoma-binding protein 1-like, and possibly homeodomain-interacting protein kinase 3 as target genes of this miRNA cluster, which establishes a link between these genes and T-cell leukemia for the first time. [Cancer Res 2007;67(12):5699–707]

Keywords

Radiation Leukemia Virus, Leukemia, T-Cell, RNA, Untranslated, Base Sequence, Blotting, Western, Molecular Sequence Data, Intracellular Signaling Peptides and Proteins, Gene Expression, Retinoblastoma-Like Protein p107, Oncogenes, Protein Serine-Threonine Kinases, Blotting, Northern, Gene Expression Regulation, Neoplastic, Mice, MicroRNAs, Cell Transformation, Neoplastic, NIH 3T3 Cells, Animals, Humans, Retroviridae Infections

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    226
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
226
Top 10%
Top 1%
Top 1%
bronze
Related to Research communities
Cancer Research