Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ LAReferencia - Red F...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2016
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2016 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Discovery
Part of book or chapter of book . 2016
versions View all 4 versions

Tools to Study SUMO Conjugation in Caenorhabditis elegans

Authors: Pelisch, Federico; Hay, Ronald T.;

Tools to Study SUMO Conjugation in Caenorhabditis elegans

Abstract

The cell biology of sumoylation has mostly been studied using transformed cultured cells and yeast. In recent years, genetic analysis has demonstrated important roles for sumoylation in the biology of C. elegans. Here, we expand the existing set of tools making it possible to address the role of sumoylation in the nematode C. elegans using a combination of genetics, imaging, and biochemistry. Most importantly, the dynamics of SUMO conjugation and deconjugation can be followed very precisely both in space and time within living worms. Additionally, the biochemistry of SUMO conjugation and deconjugation can be addressed using recombinant purified components of the C. elegans sumoylation machinery, including E3 ligases and SUMO proteases. These tools and reagents will be useful to gain insights into the biological role of SUMO in the context of a multicellular organism.

Keywords

570, Recombinant Fusion Proteins, Green Fluorescent Proteins, Saccharomyces cerevisiae, Chromosomes, Ligases, Sumo, Genes, Reporter, https://purl.org/becyt/ford/1.6, Journal Article, Animals, Humans, Amino Acid Sequence, RNA, Small Interfering, https://purl.org/becyt/ford/1, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Microscopy, Cell Cycle, Antibodies, Monoclonal, Isoenzymes, Cysteine Endopeptidases, Luminescent Proteins, Caenorhabditis Elegans, Small Ubiquitin-Related Modifier Proteins, Protein Processing, Post-Translational, Cell Division, Plasmids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Top 10%
Green