Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genesarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes
Other literature type . 2022
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes
Article . 2022
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
versions View all 4 versions

WT1, NR0B1, NR5A1, LHX9, ZFP92, ZNF275, INSL3, and NRIP1 Genetic Variants in Patients with Premature Ovarian Insufficiency in a Mexican Cohort

Authors: Luis Ramos;

WT1, NR0B1, NR5A1, LHX9, ZFP92, ZNF275, INSL3, and NRIP1 Genetic Variants in Patients with Premature Ovarian Insufficiency in a Mexican Cohort

Abstract

Premature ovarian insufficiency (POI) is one of the main causes of female premature infertility. POI is a genetically heterogeneous disorder with a complex molecular etiology; as such, the genetic causes remain unknown in the majority of patients. Therefore, this study aimed to identify mutations and characterize the associated molecular contribution of gonadogenesis-determinant genes to POI. Genomic assays, including PCR-SSCP and Sanger sequencing, followed by in silico analyses were used to investigate the underpinnings of ovarian deficiency in 11 women affected by POI. Large deletions and nucleotide insertions and duplications were excluded by PCR. Thirteen genetic variants were identified in the WT1 (c.213G>T, c.609T>C, c.873A>G, c.1122G>A), NR0B1 (c.353C>T, c.425G>A), NR5A1 (c.437G>C, IVS4-20C>T), LHX9 (IVS2-12G>C, IVS3+13C>T, c.741T>C), ZNF275 (c.969C>T), and NRIP1 (c.3403C>T) genes. Seven novel genetic variants and five unpublished substitutions were identified. No genetic aberrations were detected in the ZFP92 and INSL3 genes. Each variant was genotyped using PCR-SSCP in 100 POI-free subjects, and their allelic frequencies were similar to the patients. These analyses indicated that allelic variation in the WT1, NR0B1, NR5A1, LHX9, ZFP92, ZNF275, INSL3, and NRIP1 genes may be a non-disease-causing change or may not contribute significantly to the genetics underlying POI disorders. Findings support the polygenic nature of this clinical disorder, with the SNVs identified representing only a probable contribution to the variability of the human genome.

Keywords

DAX-1 Orphan Nuclear Receptor, LIM-Homeodomain Proteins, Mutation, Missense, Primary Ovarian Insufficiency, Steroidogenic Factor 1, Article, Cohort Studies, Mutation, ovary; fertility; polygenic; synonymous SNVs; non-synonymous SNVs; non-coding SNVs, Humans, Female, WT1 Proteins, Infertility, Female, Alleles, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
gold