Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Metabarcoding and Me...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Metabarcoding and Metagenomics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Metabarcoding and Metagenomics
Article . 2022
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Pensoft
Article . 2022
Data sources: Pensoft
https://dx.doi.org/10.17170/ko...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 5 versions

The potential of metabarcoding plant components of Malaise trap samples to enhance knowledge of plant-insect interactions

Authors: Stephanie J. Swenson; Lisa Eichler; Thomas Hörren; Andreas Kolter; Sebastian Köthe; Gerlind U. C. Lehmann; Gotthard Meinel; +3 Authors

The potential of metabarcoding plant components of Malaise trap samples to enhance knowledge of plant-insect interactions

Abstract

The worldwide rapid declines in insect and plant abundance and diversity that have occurred in the past decades have gained public attention and demand for political actions to counteract these declines are growing. Rapid large-scale biomonitoring can aid in observing these changes and provide information for decisions for land management and species protection. Malaise traps have long been used for insect sampling and when insects are captured in these traps, they carry traces of plants they have visited on the body surface or as digested food material in the gut contents. Metabarcoding offers a promising method for identifying these plant traces, providing insight into the plants with which insects are directly interacting at a given time. To test the efficacy of DNA metabarcoding with these sample types, 79 samples from 21 sites across Germany were analysed with the ITS2 barcode. This study, to our knowledge, is the first examination of metabarcoding plant DNA traces from Malaise trap samples. Here, we report on the feasibility of sequencing these sample types, analysis of the resulting taxa, the usage of cultivated plants by insects near nature conservancy areas and the detection of rare and neophyte species. Due to the frequency of contamination and false positive reads, isolation and PCR negative controls should be used in every reaction. Metabarcoding has advantages in efficiency and resolution over microscopic identification of pollen and is the only possible identification method for the other plant traces from Malaise traps and could provide a broad utility for future studies of plant-insect interactions.

Keywords

580, 570, Ecology, 590, landscape change, nature conservation, Insektensterben, plant-insect interactions, DNA metabarcoding, Landschaftsentwicklung, Naturschutz, biomonitoring, Biomonitoring, Falle, insect decline, Deutschland, QH540-549.5

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 5
    download downloads 8
  • 5
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
7
Top 10%
Average
Top 10%
5
8
Green
gold