Powered by OpenAIRE graph

In vitro regulation of reporter gene transcription by the androgen receptor AF1 domain

Authors: Iain J. McEwan; Muhammad Ansar Choudhry;

In vitro regulation of reporter gene transcription by the androgen receptor AF1 domain

Abstract

The androgen receptor (AR) is a ligand-activated transcription factor that regulates gene expression in response to the steroids testosterone and dihydrotestosterone. AR-dependent gene expression is likely to play an important role in a number of receptor-associated disorders, such as prostate cancer, spinal bulbar muscular atrophy, male type baldness and hirsutism. The AR contains two transactivation domains, termed AF1 (activation function 1) located in the N-terminus and AF2 (activation function 2) in the C-terminal ligand-binding domain. AF2 exhibits weak transcriptional activity, whereas AF1 is a strong regulator of transcription. Transcriptional regulation by AF1 is thought to be modulated by a number of proteins that interact with this region, and by post-translational modifications. Our focus is on the N-terminal-interacting proteins and their regulation of transcription via interaction with the receptor. To better understand the mechanism of AR-AF1 action, we have reconstituted AR activity in HeLa nuclear extracts using a unique dual reporter gene assay. Multiple LexA-binding sites in the promoter allow transcription to be driven by a recombinant AR-AF1–Lex fusion protein. The findings from initial experiments suggest an increase in transcription initiation and elongation rates by AR-AF1–Lex. The role of protein–protein interactions involving co-activators and basal transcription factors and AR-AF1 activity are discussed.

Related Organizations
Keywords

Transcription Factors, TFII, Binding Sites, Base Sequence, Cell-Free System, Gene Expression Regulation, Transcription, Genetic, Receptors, Androgen, Molecular Sequence Data, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Related to Research communities
Cancer Research