<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In vitro regulation of reporter gene transcription by the androgen receptor AF1 domain

doi: 10.1042/bst0321103
pmid: 15506979
In vitro regulation of reporter gene transcription by the androgen receptor AF1 domain
The androgen receptor (AR) is a ligand-activated transcription factor that regulates gene expression in response to the steroids testosterone and dihydrotestosterone. AR-dependent gene expression is likely to play an important role in a number of receptor-associated disorders, such as prostate cancer, spinal bulbar muscular atrophy, male type baldness and hirsutism. The AR contains two transactivation domains, termed AF1 (activation function 1) located in the N-terminus and AF2 (activation function 2) in the C-terminal ligand-binding domain. AF2 exhibits weak transcriptional activity, whereas AF1 is a strong regulator of transcription. Transcriptional regulation by AF1 is thought to be modulated by a number of proteins that interact with this region, and by post-translational modifications. Our focus is on the N-terminal-interacting proteins and their regulation of transcription via interaction with the receptor. To better understand the mechanism of AR-AF1 action, we have reconstituted AR activity in HeLa nuclear extracts using a unique dual reporter gene assay. Multiple LexA-binding sites in the promoter allow transcription to be driven by a recombinant AR-AF1–Lex fusion protein. The findings from initial experiments suggest an increase in transcription initiation and elongation rates by AR-AF1–Lex. The role of protein–protein interactions involving co-activators and basal transcription factors and AR-AF1 activity are discussed.
- University of Aberdeen United Kingdom
Transcription Factors, TFII, Binding Sites, Base Sequence, Cell-Free System, Gene Expression Regulation, Transcription, Genetic, Receptors, Androgen, Molecular Sequence Data, Humans
Transcription Factors, TFII, Binding Sites, Base Sequence, Cell-Free System, Gene Expression Regulation, Transcription, Genetic, Receptors, Androgen, Molecular Sequence Data, Humans
1 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average