Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 1996
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 1996 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

Isolation and developmental expression analysis of Enx-1, a novel mouse Polycomb group gene

Authors: Hobert, Oliver; Sures, Irmi; Ciossek, Thomas; Fuchs, Miriam; Ullrich, Axel;

Isolation and developmental expression analysis of Enx-1, a novel mouse Polycomb group gene

Abstract

Members of the Polycomb group (Pc-G) of genes encode transcriptional regulators that control the expression of key developmental effector genes in Drosophila melanogaster. Although multiple Pc-G genes have been identified and characterized in Drosophila, information about these important regulatory proteins in vertebrates, including their precise expression patterns, has remained scarce. We report here the cloning of Enx-1, a novel vertebrate Pc-G gene, which encodes the murine homolog of the Drosophila Enhancer of zeste (E(z)) gene. Drosophila E(z) controls the expression of several homeobox genes as well as some segmentation genes and its disruption causes multiple phenotypes in Drosophila development. Analysis of the primary structure of murine Enx-1 reveals the conservation of several regions, including the previously described SET domain and a newly defined CXC domain. In addition, we find the SET domain to be conserved in evolutionarily distant species ranging from vertebrates to plants and fungi. The expression pattern analysis of Enx-1 reveals ubiquitous expression throughout early embryogenesis, while in later embryonic development Enx-1 expression becomes restricted to specific sites within the central and peripheral nervous system and to the major sites of fetal hematopoiesis. In adult stages we also find Enx-1 expression to be restricted to specific tissues, including spleen, testis and placenta.

Keywords

Polycomb Repressive Complex 1, Embryology, Mice, Inbred BALB C, Base Sequence, Molecular Sequence Data, Gene Expression Regulation, Developmental, Polycomb-Group Proteins, Repressor Proteins, Mice, Animals, Drosophila Proteins, Insect Proteins, Drosophila, Amino Acid Sequence, Cloning, Molecular, Sequence Alignment, Conserved Sequence, Developmental Biology, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    71
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
71
Top 10%
Top 10%
Top 1%
hybrid