Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Biochemica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Biochemical Sciences
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The eukaryotic plasma membrane as a nutrient-sensing device

Authors: Inge, Holsbeeks; Ole, Lagatie; An, Van Nuland; Sam, Van de Velde; Johan M, Thevelein;

The eukaryotic plasma membrane as a nutrient-sensing device

Abstract

In eukaryotic cells, G-protein-coupled receptors (GPCRs), non-transporting nutrient carrier homologues and active nutrient carriers have been recently shown to function as sensors that directly monitor the level of nutrients in the extracellular environment. The plasma membrane is not only the cellular boundary at which signalling molecules that govern metabolism and proliferation are detected, but also the boundary across which nutrients that sustain the generation of energy and building blocks are transported. Nutrient sensors combine these functions in various ways. Classical receptor proteins detect the presence of nutrients, carriers combine the functions of nutrient transporters and receptors, and carrier homologues have lost their transport capacity and become pure receptors. The activation of signal transduction pathways by nutrients adds a new layer to the regulatory network that controls metabolism and proliferation. Nutrient sensors highlight the importance of both nutrients as signalling molecules and nutrient carriers as receptors for signalling pathways.

Related Organizations
Keywords

Eukaryotic Cells, Glucose, Cell Membrane, Biological Transport, Nutritional Physiological Phenomena, Saccharomyces cerevisiae, Models, Biological, Receptors, G-Protein-Coupled, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    164
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
164
Top 10%
Top 10%
Top 10%