Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BioFactorsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BioFactors
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioFactors
Article . 2011 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
BioFactors
Article . 2011
versions View all 2 versions

Secretory pathway stress responses as possible mechanisms of disease involving Golgi Ca2+ pump dysfunction

Authors: Gary E, Shull; Marian L, Miller; Vikram, Prasad;

Secretory pathway stress responses as possible mechanisms of disease involving Golgi Ca2+ pump dysfunction

Abstract

In mammalian tissues, uptake of Ca(2+) and Mn(2+) by Golgi membranes is mediated by the secretory pathway Ca(2+) -ATPases, SPCA1 and SPCA2, encoded by the ATP2C1 and ATP2C2 genes. Loss of one copy of the ATP2C1 gene, which causes SPCA1 haploinsufficiency, leads to squamous cell tumors of keratinized epithelia in mice and to Hailey-Hailey disease, an acantholytic skin disease, in humans. Although the disease phenotypes resulting from SPCA1 haploinsufficiency in mice and humans are quite different, each species-specific phenotype is remarkably similar to those arising as a result of null mutations in one copy of the ATP2A2 gene, encoding SERCA2, the endoplasmic reticulum (ER) Ca(2+) pump. SERCA2 haploinsufficiency, like SPCA1 haploinsufficiency, causes squamous cell tumors in mice and Darier's disease, also an acantholytic skin disease, in humans. The phenotypic similarities between SPCA1 and SERCA2 haploinsufficiency in the two species, and the general functions of the two pumps in consecutive compartments of the secretory pathway, suggest that the underlying disease mechanisms are similar. In this review, we discuss evidence supporting the view that chronic Golgi stress and/or ER stress resulting from Ca(2+) pump haploinsufficiencies leads to activation of cellular stress responses in keratinocytes, with the predominance of proapoptotic pathways (although not necessarily apoptosis itself) leading to acantholytic skin disease in humans and the predominance of prosurvival pathways leading to tumors in mice.

Keywords

Secretory Pathway, Animals, Golgi Apparatus, Humans, Calcium, Calcium-Transporting ATPases, Endoplasmic Reticulum, Darier Disease

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
bronze