Powered by OpenAIRE graph

Total Saponins ofPanax GinsengInduces K562 Cell Differentiation by Promoting Internalization of the Erythropoietin Receptor

Authors: Guowei, Zuo; Tao, Guan; Dilong, Chen; Chunli, Li; Rong, Jiang; Chunyan, Luo; Xiaoshu, Hu; +2 Authors

Total Saponins ofPanax GinsengInduces K562 Cell Differentiation by Promoting Internalization of the Erythropoietin Receptor

Abstract

Ginseng is a commonly used herbal medicine with a wide range of therapeutic benefits. Total saponins of Panax ginseng (TSPG) is one of the main effective components of ginseng. Our previous studies have shown that TSPG could promote the production of normal blood cells and inhibition of the leukemia cell proliferation. However, whether ginseng can induce the differentiation of leukemia cells is still unclear. This study was to examine the effect of TSPG or the combination of erythropoietin (EPO) and TSPG on the erythroid differentiation of K562 cells, and their corresponding mechanisms regarding erythropoietin receptor (EPOR) expression. Under light and electron microscopes, the TSPG- or TSPG + EPO-treated K562 cells showed a tendency to undergo erythroid differentiation; early and intermediate erythroblast-like cells were observed. Hemoglobin and HIR2 expressions were significantly increased. As determined by Western blotting analysis, the EPOR protein level in the K562 cytoplasmic membrane was significantly decreased after TSPG treatment, while its cytoplasm level increased in a dose-dependent manner. However, the total cellular EPOR level was unchanged. These results indicate that TSPG-induced erythroid differentiation of K562 cells may be accompanied by the internalization of EPOR. Thus, our study suggests that treatment with a combination of TSPG and EPO may induce erythroid differentiation of K562 cells at least in part through induction of EPOR internalization.

Related Organizations
Keywords

Cell Nucleus, Dose-Response Relationship, Drug, Erythroblasts, Blotting, Western, Panax, Cell Differentiation, Saponins, Flow Cytometry, Immunohistochemistry, Endocytosis, Hemoglobins, Microscopy, Electron, Transmission, Receptors, Erythropoietin, Humans, K562 Cells, Erythropoietin, Cell Size

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Average
Top 10%
Average