Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Brain Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Brain Research
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Decrease in dystrophin expression prior to disruption of brain–blood barrier within the rat piriform cortex following status epilepticus

Authors: Tae-Cheon Kang; Hea Jin Ryu; Kyung-Chan Choi; Yeseul Yang; Ji-Eun Kim; Seung Hun Sheen;

Decrease in dystrophin expression prior to disruption of brain–blood barrier within the rat piriform cortex following status epilepticus

Abstract

Increased permeability of the brain-blood barrier (BBB) in the piriform cortex (PC) has been reported in various animal models of temporal lobe epilepsy. Since BBB disruption induced by epileptogenic insult has not fully clarified, we attempted to determine whether changes in BBB-related molecules are associated with vasogenic edema in the PC. One day after status epilepticus (SE), PC neurons and astrocytes showed a pyknotic nucleus and shrunken cytoplasm accompanied by vasogenic edema. At this time point, SMI-71 (an endothelial barrier antigen) immunoreactivity had decreased in the PC. Prior to vasogenic edema formation (12 h after SE), dystrophin immunoreactivity disappeared within astrocytes, while the change in glial fibrillary acidic protein immunoreactivity was negligible. However, glucose transporter-1 (an endothelial cell marker) had increased at 12 h after SE. These findings indicate that dysfunction of dystrophin induced by SE may result in endothelial and astroglial damage with BBB breakdown and increase vascular permeability, leading to vasogenic edema that is involved in pathogenesis of epileptogenesis.

Related Organizations
Keywords

Cerebral Cortex, Neurons, Fluorescent Antibody Technique, Brain Edema, Immunohistochemistry, Rats, Capillary Permeability, Dystrophin, Rats, Sprague-Dawley, Status Epilepticus, Excitatory Amino Acid Transporter 2, Blood-Brain Barrier, Astrocytes, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%