Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ European Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
European Journal of Medicinal Chemistry
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

The development of Coronavirus 3C-Like protease (3CLpro) inhibitors from 2010 to 2020

Authors: Liu, Yuzhi; Liang, Chengyuan; Xin, Liang; Ren, Xiaodong; Tian, Lei; Ju, Xingke; Li, Han; +8 Authors

The development of Coronavirus 3C-Like protease (3CLpro) inhibitors from 2010 to 2020

Abstract

This review fully describes the coronavirus 3CLpro peptidomimetic inhibitors and nonpeptidic small molecule inhibitors developed from 2010 to 2020. Specifically, the structural characteristics, binding modes and SARs of these 3CLpro inhibitors are expounded in detail by division into two categories: peptidomimetic inhibitors mainly utilize electrophilic warhead groups to covalently bind the 3CLpro Cys145 residue and thereby achieve irreversible inhibition effects, whereas nonpeptidic small molecule inhibitors mainly interact with residues in the S1', S1, S2 and S4 pockets via hydrogen bonds, hydrophobic bonds and van der Waals forces. Based on the emerging PROTAC technology and the existing 3CLpro inhibitors, 3CLpro PROTAC degraders are hypothesised to be next-generation anti-coronavirus drugs.

Related Organizations
Keywords

Pharmacology, Coronaviruses, SARS-CoV-2, Organic Chemistry, COVID-19, General Medicine, Review Article, Viral Nonstructural Proteins, Antiviral Agents, Coronavirus, Cysteine Endopeptidases, 3C-Like Protease (3CLpro) Inhibitors, Síndrome respiratorio agudo grave, Drug Discovery, Humans, Proteolysis-Targeting Chimaera (PROTAC), Protease Inhibitors, Peptidomimetics, Peptidomimetic inhibitors, Coronavirus 3C Proteases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    148
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
148
Top 1%
Top 10%
Top 1%
Green
hybrid