Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Cell Biologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Cell Biology
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1

Authors: Xiaolong, Yang; Kuanping, Yu; Yawei, Hao; Da-ming, Li; Rodney, Stewart; Karl L, Insogna; Tian, Xu;

LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1

Abstract

LATS (large tumour suppressor) is a family of conserved tumour suppressors identified in Drosophila and mammals. Here we show that human LATS1 binds to LIMK1 in vitro and in vivo and colocalizes with LIMK1 at the actomyosin contractile ring during cytokinesis. LATS1 inhibits both the phosphorylation of cofilin by LIMK1 and LIMK1-induced cytokinesis defects. Inactivation of LATS1 by antibody microinjection or RNA-mediated interference in cells, or gene knockout in mice, abrogates cytokinesis and increases the percentage of multinucleate cells. Our findings indicate that LATS1 is a novel cytoskeleton regulator that affects cytokinesis by regulating actin polymerization through negative modulation of LIMK1.

Related Organizations
Keywords

Feedback, Physiological, Mice, Knockout, Cell Cycle, Microfilament Proteins, Lim Kinases, Actomyosin, Giant Cells, Antibodies, DNA-Binding Proteins, Actin Cytoskeleton, Mice, Fetus, Actin Depolymerizing Factors, Animals, Newborn, Animals, Humans, Phosphorylation, Cell Division, Cells, Cultured, HeLa Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    165
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
165
Top 10%
Top 1%
Top 10%