Molecular and genomic approach for understanding the gene-environment interaction between Nrf2 deficiency and carcinogenic nickel-induced DNA damage
Molecular and genomic approach for understanding the gene-environment interaction between Nrf2 deficiency and carcinogenic nickel-induced DNA damage
Nickel (Ⅱ) is a toxic and carcinogenic metal which induces a redox imbalance following oxidative stress. Nuclear factor erythroid-2 related factor 2 (Nrf2) is a redox factor that regulates oxidation/reduction status and consequently mediates cytoprotective responses against exposure to environmental toxicants. In this study, we investigated the protective roles of the Nrf2 gene against oxidative stress and DNA damage induced by nickel at sub-lethal doses. Under nickel exposure conditions, we detected significantly increased intracellular ROS generation, in addition to higher amounts of DNA damage using comet assay and γ-H2AX immunofluorescence staining in Nrf2 lacking cells, as compared to Nrf2 wild-type cells. In addition, we attempted to identify potential nickel and Nrf2-responsive targets and the relevant pathway. The genomic expression data were analyzed using microarray for the selection of synergistic effect-related genes by Nrf2 knockdown under nickel treatment. In particular, altered expressions of 6 upregulated genes (CAV1, FOSL2, MICA, PIM2, RUNX1 and SLC7A6) and 4 downregulated genes (APLP1, CLSPN, PCAF and PRAME) were confirmed by qRT-PCR. Additionally, using bioinformatics tool, we found that these genes functioned principally in a variety of molecular processes, including oxidative stress response, necrosis, DNA repair and cell survival. Thus, we describe the potential biomarkers regarded as molecular candidates for Nrf2-related cellular protection against nickel exposure. In conclusion, these findings indicate that Nrf2 is an important factor with a protective role in the suppression of mutagenicity and carcinogenicity by environmental nickel exposure in terms of gene-environment interaction.
- Dongguk University Korea (Republic of)
- KYUNG HEE UNIVERSITY
- Kyung Hee University Korea (Republic of)
DNA Repair, Cell Survival, NF-E2-Related Factor 2, Articles, Acetates, Oxidative Stress, Cytoprotection, Cell Line, Tumor, Organometallic Compounds, Humans, Gene-Environment Interaction, RNA Interference, RNA, Small Interfering, Oxidation-Reduction, DNA Damage
DNA Repair, Cell Survival, NF-E2-Related Factor 2, Articles, Acetates, Oxidative Stress, Cytoprotection, Cell Line, Tumor, Organometallic Compounds, Humans, Gene-Environment Interaction, RNA Interference, RNA, Small Interfering, Oxidation-Reduction, DNA Damage
5 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).38 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
