Temperature dependence of fluctuations in HIV1-protease
pmid: 19326111
Temperature dependence of fluctuations in HIV1-protease
Revealing the structure and the intrinsic dynamics of a protein is paramount to understand its function and other properties of evolutionary importance. Several schemes to obtain such insight in silico were developed over the decades. A computationally efficient protocol approximates the molecular dynamics around its native state by a harmonic potential. In this paper, we introduce a new methodology to combine the various harmonic approaches to understand the folding/unfolding dynamics and the dynamics around the native structure of the protein in a temperature dependent way. We apply this new protocol to the HIV1-protease and discuss the results in the light of events in the adaptive evolution towards drug resistance, which is a major problem in HIV infection.
- TU Darmstadt Germany
Protein Folding, HIV Protease, Protein Conformation, Protein Stability, HIV-1, Temperature, Molecular Dynamics Simulation, Algorithms
Protein Folding, HIV Protease, Protein Conformation, Protein Stability, HIV-1, Temperature, Molecular Dynamics Simulation, Algorithms
1 Research products, page 1 of 1
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
