Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Gene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 1999 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Gene
Article . 1999
versions View all 2 versions

Characterization of the components of the putative mammalian sister chromatid cohesion complex

Authors: Alexander V. Strunnikov; Lita A. Freeman; Nadine Darwiche;

Characterization of the components of the putative mammalian sister chromatid cohesion complex

Abstract

Establishing and maintaining proper sister chromatid cohesion throughout the cell cycle are essential for maintaining genome integrity. To understand how sister chromatid cohesion occurs in mammals, we have cloned and characterized mouse orthologs of proteins known to be involved in sister chromatid cohesion in other organisms. The cDNAs for the mouse orthologs of SMC1S.c. and SMC3S.c. , mSMCB and mSMCD respectively, were cloned, and the corresponding transcripts and proteins were characterized. mSMCB and mSMCD are transcribed at similar levels in adult mouse tissues except in testis, which has an excess of mSMCD transcripts. The mSMCB and mSMCD proteins, as well as the PW29 protein, a mouse homolog of Mcd1pS.c./Rad21S.p., form a complex similar to cohesin in X. laevis. mSMCB, mSMCD and PW29 protein levels show no significant cell-cycle dependence. The bulk of the mSMCB, mSMCD and PW29 proteins undergo redistribution from the chromosome vicinity to the cytoplasm during prometaphase and back to the chromatin in telophase. This pattern of intracellular localization suggests a complex role for this group of SMC proteins in chromosome dynamics. The PW29 protein and PCNA, which have both been implicated in sister chromatid cohesion, do not colocalize, indicating that these proteins may not function in the same cohesion pathway. Overexpression of a PW29-GFP fusion protein in mouse fibroblasts leads to inhibition of proliferation, implicating this protein and its complex with SMC proteins in the control of mitotic cycle progression.

Related Organizations
Keywords

DNA, Complementary, Chromosomal Proteins, Non-Histone, Cell Cycle, Molecular Sequence Data, Mitosis, Cell Cycle Proteins, 3T3 Cells, Chromatids, Fungal Proteins, Mice, Chondroitin Sulfate Proteoglycans, Animals, Amino Acid Sequence, Cloning, Molecular, Structural Maintenance of Chromosome Protein 1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 10%
Top 10%
Top 1%
bronze