Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Lipid...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Lipid Research
Article . 2011 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Lipid Research
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Lipid Research
Article . 2011
Data sources: DOAJ
versions View all 3 versions

TNF-α promotes LPA1- and LPA3-mediated recruitment of leukocytes in vivo through CXCR2 ligand chemokines

Authors: Chenqi Zhao; Anne Sardella; Jerold Chun; Patrice E. Poubelle; Maria J. Fernandes; Sylvain G. Bourgoin;

TNF-α promotes LPA1- and LPA3-mediated recruitment of leukocytes in vivo through CXCR2 ligand chemokines

Abstract

Lysophosphatidic acid (LPA) is a bioactive lysophospholipid present in low concentrations in serum and biological fluids but in high concentrations at sites of inflammation. LPA evokes a variety of cellular responses via binding to and activation of its specific G protein-coupled receptors (GPCR), namely LPA(1-6). Even though LPA is a chemoattractant for inflammatory cells in vitro, such a role for LPA in vivo remains largely unexplored. In the present study, we used the murine air pouch model to study LPA-mediated leukocyte recruitment in vivo using selective LPA receptor agonist/antagonist and LPA(3)-deficient mice. We report that 1) LPA injection into the air pouch induced leukocyte recruitment and that both LPA(1) and LPA(3) were involved in this process; 2) LPA stimulated the release of the pro-inflammatory chemokines keratinocyte-derived chemokine (KC) and interferon-inducible protein-10 (IP-10) in the air pouch; 3) tumor necrosis factor-α (TNF-α) injected into the air pouch prior to LPA strongly potentiated LPA-mediated secretion of cytokines/chemokines, including KC, IL-6, and IP-10, which preceded the enhanced leukocyte influx; and 4) blocking CXCR2 significantly reduced leukocyte infiltration. We suggest that LPA, via LPA(1) and LPA(3) receptors, may play a significant role in inducing and/or sustaining the massive infiltration of leukocytes during inflammation.

Keywords

Time Factors, Phosphatidic Acids, QD415-436, Ligands, Biochemistry, Receptors, Interleukin-8B, Gene Knockout Techniques, Mice, Leukocytes, Animals, Receptors, Lysophosphatidic Acid, Inflammation, Dose-Response Relationship, Drug, Tumor Necrosis Factor-alpha, Organothiophosphates, LPA receptor agonist/antagonist, LPA receptor deficient mice, inflammation, Female, CXC chemokines, Chemokines, Lysophospholipids, murine air pouch model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Top 10%
Top 10%
gold