Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 2004 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions

Ubiquitination and Proteolysis of Cancer-Derived Smad4 Mutants by SCFSkp2

Authors: Min, Liang; Yao-Yun, Liang; Katharine, Wrighton; Dana, Ungermannova; Xiao-Ping, Wang; F Charles, Brunicardi; Xuedong, Liu; +2 Authors

Ubiquitination and Proteolysis of Cancer-Derived Smad4 Mutants by SCFSkp2

Abstract

Smad4/DPC4, a common signal transducer in transforming growth factor beta (TGF-beta) signaling, is frequently inactivated in human cancer. Although the ubiquitin-proteasome pathway has been established as one mechanism of inactivating Smad4 in cancer, the specific ubiquitin E3 ligase for ubiquitination-mediated proteolysis of Smad4 cancer mutants remains unclear. In this report, we identified the SCFSkp2 complex as candidate Smad4-interacting proteins in an antibody array-based screen and further elucidated the functions of SCFSkp2 in mediating the metabolic instability of cancer-derived Smad4 mutants. We found that Skp2, the F-box component of SCFSkp2, physically interacted with Smad4 at the physiological levels. Several cancer-derived unstable mutants exhibited significantly increased binding to Skp2, which led to their increased ubiquitination and accelerated proteolysis. These results suggest an important role for the SCFSkp2 complex in switching cancer mutants of Smad4 to undergo polyubiquitination-dependent degradation.

Keywords

Proteasome Endopeptidase Complex, Ubiquitin, Recombinant Fusion Proteins, Amino Acid Motifs, JNK Mitogen-Activated Protein Kinases, Cell Line, DNA-Binding Proteins, Cysteine Endopeptidases, Multienzyme Complexes, Neoplasms, Trans-Activators, Animals, Humans, RNA Interference, Mitogen-Activated Protein Kinases, Protein Processing, Post-Translational, S-Phase Kinase-Associated Proteins, Protein Binding, Signal Transduction, Smad4 Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    77
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
77
Top 10%
Top 10%
Top 10%
bronze