<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Activation of toxin ADP-ribosyltransferases by eukaryotic ADP-ribosylation factors

pmid: 10331652
Activation of toxin ADP-ribosyltransferases by eukaryotic ADP-ribosylation factors
ADP-ribosylation factors (ARFs) are members of a multigene family of 20-kDa guanine nucleotide-binding proteins that are regulatory components in several pathways of intracellular vesicular trafficking. The relatively small (approximately 180-amino acids) ARF proteins interact with a variety of molecules (in addition to GTP/GDP, of course). Cholera toxin was the first to be recognized, hence the name. Later it was shown that ARF also activates phospholipase D. Different parts of the molecule are responsible for activation of the two enzymes. In vesicular trafficking, ARF must interact with coatomer to recruit it to a membrane and thereby initiate vesicle budding. ARF function requires that it alternate between GTP- and GDP-bound forms, which involves interaction with regulatory proteins. Inactivation of ARF-GTP depends on a GTPase-activating protein or GAP. A guanine nucleotide-exchange protein or GEP accelerates release of bound GDP from inactive ARF-GDP to permit GTP binding. Inhibition of GEP by brefeldin A (BFA) blocks ARF activation and thereby vesicular transport. In cells, it causes apparent disintegration of Golgi structure. Both BFA-sensitive and insensitive GEPs are known. Sequences of peptides from a BFA-sensitive GEP purified in our laboratory revealed the presence of a Sec7 domain, a sequence of approximately 200 amino acids that resembles a region in the yeast Sec7 gene product, which is involved in Golgi vesicular transport. Other proteins of unknown function also contain Sec7 domains, among them a lymphocyte protein called cytohesin-1. To determine whether it had GEP activity, recombinant cytohesin-1 was synthesized in E. coli. It preferentially activated class I ARFs 1 and 3 and was not inhibited by BFA but failed to activate ARF5 (class II). There are now five Sec7 domain proteins known to have GEP activity toward class I ARFs. It remains to be determined whether there are other Sec7 domain proteins that are GEPs for ARFs 4, 5, or 6.
- National Institute of Health Pakistan
- National Institutes of Health United States
Protein Synthesis Inhibitors, Brefeldin A, Time Factors, ADP-Ribosylation Factors, Saccharomyces cerevisiae, Models, Biological, Enzyme Activation, Fungal Proteins, GTP-Binding Proteins, Escherichia coli, Animals, Guanine Nucleotide Exchange Factors, Cattle, Poly(ADP-ribose) Polymerases, Cell Adhesion Molecules, Toxins, Biological
Protein Synthesis Inhibitors, Brefeldin A, Time Factors, ADP-Ribosylation Factors, Saccharomyces cerevisiae, Models, Biological, Enzyme Activation, Fungal Proteins, GTP-Binding Proteins, Escherichia coli, Animals, Guanine Nucleotide Exchange Factors, Cattle, Poly(ADP-ribose) Polymerases, Cell Adhesion Molecules, Toxins, Biological
7 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 1997IsAmongTopNSimilarDocuments
- 2000IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%