Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ REPISALUDarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Pharmacology
Article . 2020 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Pharmacology
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions

Cytotoxic cell populations developed during treatment with tyrosine kinase inhibitors protect autologous CD4+ T cells from HIV-1 infection

Authors: Vigon-Hernandez, Lorena; Rodríguez-Mora, Sara; Luna, Alejandro; Sandonis-Martin, Virginia; Mateos, Elena; Bautista, Guiomar; Steegmann, Juan Luis; +9 Authors

Cytotoxic cell populations developed during treatment with tyrosine kinase inhibitors protect autologous CD4+ T cells from HIV-1 infection

Abstract

Tyrosine kinase inhibitors (TKIs) are successfully used in clinic to treat chronic myeloid leukemia (CML). Our group previously described that CD4+ T cells from patients with CML on treatment with TKIs such as dasatinib were resistant to HIV-1 infection ex vivo. The main mechanism for this antiviral activity was primarily based on the inhibition of SAMHD1 phosphorylation, which preserves the activity against HIV-1 of this innate immune factor. Approximately 50% CML patients who achieved a deep molecular response (DMR) may safely withdraw TKI treatment without molecular recurrence. Therefore, it has been speculated that TKIs may induce a potent antileukemic response that is maintained in most patients even one year after treatment interruption (TI). Subsequent to in vitro T-cell activation, we observed that SAMHD1 was phosphorylated in CD4+ T cells from CML patients who withdrew TKI treatment more than one year earlier, which indicated that these cells were now susceptible to HIV-1 infection. Importantly, these patients were seronegative for HIV-1 and seropositive for cytomegalovirus (CMV), but without CMV viremia. Although activated CD4+ T cells from CML patients on TI were apparently permissive to HIV-1 infection ex vivo, the frequency of proviral integration was reduced more than 12-fold on average when these cells were infected ex vivo in comparison with cells isolated from untreated, healthy donors. This reduced susceptibility to infection could be related to an enhanced NK-dependent cytotoxic activity, which was increased 8-fold on average when CD4+ T cells were infected ex vivo with HIV-1 in the presence of autologous NK cells. Enhanced cytotoxic activity was also observed in CD8 + T cells from these patients, which showed 8-fold increased expression of TCRγδ and more than 18-fold increased production of IFNγ upon activation with CMV peptides. In conclusion, treatment with TKIs induced a potent antileukemic response that may also have antiviral effects against HIV-1 and CMV, suggesting that transient use of TKIs in HIV-infected patients could develop a sustained antiviral response that would potentially interfere with HIV-1 reservoir dynamics.

Country
Spain
Keywords

Adult, Aged, 80 and over, CD4-Positive T-Lymphocytes, Male, Chronic myeloid leukemia, Src tyrosine kinases, HIV Infections, Middle Aged, Antiviral Agents, SAMHD1, Viral reservoir, Cytoprotection, Leukemia, Myelogenous, Chronic, BCR-ABL Positive, HIV-1, Humans, Female, Protein Kinase Inhibitors, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green
hybrid