Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genomicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 2001 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 2001
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Use of Comparative Physical and Sequence Mapping to Annotate Mouse Chromosome 16 and Human Chromosome 21

Authors: Melissa Villanueva; Mathew T. Pletcher; Tim Wiltshire; Roger H. Reeves; Deborah E. Cabin;

Use of Comparative Physical and Sequence Mapping to Annotate Mouse Chromosome 16 and Human Chromosome 21

Abstract

Distal mouse chromosome 16 (MMU16) shares conserved linkage with human chromosome 21 (HSA21), trisomy for which causes Down syndrome (DS). A 4.5-Mb physical map extending from Cbr1 to Tmprss2 on MMU16 provides a minimal tiling path of P1 artificial chromosomes (PACs) for comparative mapping and genomic sequencing. Thirty-four expressed sequences were positioned on the mouse map, including 19 that were not physically mapped previously. This region of the mouse:human comparative map shows a high degree of evolutionary conservation of gene order and content, which differs only by insertion of one gene (in mouse) and a small inversion involving two adjacent genes. "Low-pass" (2.2x) mouse sequence from a portion of the contig was ordered and oriented along 510 kb of finished HSA21 sequence. In combination with 68 kb of unique PAC end sequence, the comparison provided confirmation of genes predicted by comparative mapping, indicated gene predictions that are likely to be incorrect, and identified three candidate genes in mouse and human that were not observed in the initial HSA21 sequence annotation. This comparative map and sequence derived from it are powerful tools for identifying genes and regulatory regions, information that will in turn provide insights into the genetic mechanisms by which trisomy 21 results in DS.

Related Organizations
Keywords

Expressed Sequence Tags, Chromosomes, Human, Pair 21, DNA, Sequence Analysis, DNA, Physical Chromosome Mapping, Chromosomes, Contig Mapping, Mice, Gene Order, Animals, Humans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    37
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
37
Average
Top 10%
Top 10%
gold